بررسی رویکردهای الگوریتمیک در چیدمان فضایی (با تأکید بر نظریه گراف)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری معماری، گروه معماری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیارگروه معماری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی، تهران، ایران.

4 استادیار گروه آموزشی علوم کامپیوتر، دانشکده ریاضی و علوم کامپیوتر، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

چیدمان فضایی در پلان و به خصوص پلان‌های عملکردی از مهم‌ترین بخش‌های هر طرح معماری است. چیدمان فضایی نامناسب منجر به ناکارآمدی پلان در خصوص عملکرد موردنظر می‌شود. جهت چیدمان تسهیلات کارخانه‌ها الگوریتم‌های بسیاری توسط مهندسین صنایع به‌کار گرفته می‌شوند. با پیشرفت‌های صورت گرفته در علوم کامپیوتر این فرض مطرح است که بتوان از الگوریتم‌ها جهت رسیدن به چیدمان فضایی مطلوب در طرح‌های معماری نیز استفاده نمود. در راستای به کارگیری الگوریتم‌ها نیاز است روش‌هایی ارائه شوند تا الگوریتم‌ها با به کارگیری آن‌ها روند چیدمان فضایی را هدایت کنند. هدف پژوهش بررسی مدل‌های اولیه ارائه شده مبتنی بر این روش‌ها است. هدف اصلی پژوهش تمرکز بر انتخاب مدلی است که با به کارگیری آن بتوان روابط فضایی را با تأکید بر همجواری عملکردی فضاها در مراحل ابتدایی طرح  و بدون درگیر کردن طراح با ابعاد و اندازه‌ها مدل کرد. از طرفی دیگر این مدل قابلیت توسعه در جهت اعمال ابعاد و اندازه‌ها در مراحل بعدی را نیز دارا است. در راستای انجام پژوهش مدل‌های ‌ارائه شده برای هر یک از این روش‌ها با استفاده از روش مرور نظام‌مند ارائه شده‌اند. سه مدل اصلی در این خصوص وجود دارند. مدل اول شامل بهینه‌سازی براساس یک تابع تک متغیره، مدل دوم مبتنی به تئوری گراف و مدل سوم، مرتبط با بهینه‌سازی چند معیاره می‌باشد. با توجه به اهمیت همجواری عملکردی فضاها در پلان‌های عملکردی و معادل سازی مفهومی نظریه نحو فضا با تئوری گراف و امکان تحلیل روابط عملکردی توسط آن مدل دوم مدلی بسیار مطلوب و انعطاف‌پذیر جهت استفاده طراحان می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Algorithmic Approaches in space Layout (with an Emphasis on Graph Theory)

نویسندگان [English]

  • Romeysa Rahmati Govari 1
  • Hadi Ghoddusifar 2
  • Mansoureh Tahbaz 3
  • Fatemeh Zare’ Mirak Abad 4
1 Ph.D. of Architecture, Department of Architecture, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor of Architecture, Department of Architecture, South Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Associate Professor of Architecture, Faculty of Architecture and Urbanism, Shahid Beheshti University, Tehran, Iran.
4 Assistant Professor of Computer Science, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

The space layout in the functional plans is the most significant part of every architectural design. The inappropriate space layout leads to the plan inefficiency in the considered function. Industrial engineers use many algorithms to arrange the factories’ facilities. Given the advances in computer science, it is assumed that algorithms can be applied to achieve the desired space layout in architectural designs. In order to apply algorithms, it is required to provide methods that algorithms or using them direct the space layout to apply algorithms. The current research aims to investigate the given primary models based on these methods. The main purpose of this research is to focus on selecting a model that can be used to model spatial relations by emphasizing the functional proximity of spaces in the early stages of design and without involving the designer with dimensions and sizes. Also, this model can be developed to apply dimensions and sizes in the next steps. The given models for each one of these methods are presented using the systematic review method to conduct this research. There are three main models in this regard; the first model includes single-variable optimization. The second model is based on Graph theory, and the third model is related to multi-criteria optimization. Given the importance of the functional proximity of the spaces in the functional plans, and conceptual equivalence of space syntax theory with graph theory, and the possible analysis of its functional relations, the second model is a desirable and flexible model for designers to use.

کلیدواژه‌ها [English]

  • Space layout
  • Functional Proximity
  • Graph theory
  • Space Syntax
  • Algorithm
Alexander, C. (1964). Notes on the Synthesis of Form. Cambridge: Harvard University Press.
Al-Hakim, L.A. (1991). Two Graph Theoretic Procedures for an Improved Solution to the Facilities Layout Problem. Int J Prod Res, 29(8), 1701–1718. https://www.tandfonline.com/doi/abs/10.1080/00207549108948041
Al-Hakim, L.A. (1992). A Modified Procedure for Converting a Dual Graph to a Blok Layout. Int J Prod Res, 30(10), 2467–2476. https://www.tandfonline.com/doi/abs/10.1080/00207549208948167
Al-Hakim, L.A. (2001). A Note on Efficient Facility Layout Planning in a Maximally Planar Graph Model. Int J Prod Res, 39 (7), 1549-1555. https://www.researchgate.net/publication/261629024_A_note_on_’Efficient_facility_layout_planning_in_a_maximally_planar_graph_model’
Alvarez, M., San Joe, M., & Rio, O. (2004). Use of an Adjacency Graph in Computer-Aided Drawing of Floor Plans.
Batty, M. (2004). Distance in Space Syntax, Working, Paper 80, CASA, UCL, London. 
Boswell, S.G. (1994). A Reply to ‘A Note on Similarity of a New Greedy Heuristic for Facility Layout by Graph Theory to an Existing Approach’. Int J Prod Res, 32(1), 235-240. https://www.tandfonline.com/doi/abs/10.1080/00207549408956928
Bozer, Y.A., Meller, R.D., & Erlebacher, S.J. (1994). An Improvementtype Layout Algorithm for Single and Multiple-Floor Facilities. Manage Sci, 40(7), 918-932. https://econpapers.repec.org/article/inmormnsc/v_3a40_3ay_3a1994_3ai_3a7_3ap_3a918-932.htm
Caldas, L. (2008). Generation of Energy-Efficient Architecture Solutions Applying GENE_ARCH. Advanced Engineering Informatics, 22(1), 59-70. https://www.researchgate.net/publication/223275102_Generation_of_energy-efficient_architecture_solutions_applying_GENE_ARCH_An_evolution-based_generative_design_system
Casalaina, V., & Rittel, H. (1967). Morphologies of Floor Plans. Conference on Computer-Aided Building Design.
Chan, W.M., Chan, C.Y., & Ip, W.H. (2002). A Heuristic Algorithm for Machine Assignment in Cellular Layout. Comput Ind Eng. 44, 49-73.http://ira.lib.polyu.edu.hk/handle/10397/15162
Chías, P., Abad, T., & García-Rosales, G. (2019). New Graphic Tools for Hospital’s Spatial Analysis and Design. Graphic Imprints, 1283-1292.
Diponegoro, A., & Sarker, B.R. (2003). Machine Assignment in a Nonlinear Multi-Product Flowline. J Oper Res Soc, 54(5), 472-489. https://link.springer.com/article/10.1057/palgrave.jors.2601488?shared-article-renderer
Eastman, C. (1973). Automated Space Planning. In: Artificial Intelligence. 4, 41-64. https://www.sciencedirect.com/science/article/abs/pii/0004370273900088
Flemming, U., & Woodbury, R. (1995). Software Environment to Support Early Phases in Building Design (SEED): Overview. Journal of Architectural Engineering, 1(4), 147-152. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0431%281995%291%3A4%28147%29
Foulds, L.R., & Giffin, J.W. (1985). A Graph-Theoretic Heuristic for Minimizing Total Transportation Cost in Facilities Layout. Int J Prod Res. 23, 1247-1257. https://www.tandfonline.com/doi/abs/10.1080/00207548508904779
Foulds, L.R., Giffin, J.W., & Cameron., D.C. (1986). Drawing a Block Plan with Graph Theory and a Microcomputer. Comput Ind Eng, 10,109-116. https://www.sciencedirect.com/science/article/abs/pii/036083528690032X
Goetschalckx, M. (1992). An Interactive Layout Heuristic Based on Hexagonal Adjacency Graphs. Eur J Oper Res, 63, 304-321. https://ideas.repec.org/a/eee/ejores/v63y1992i2p304-321.html
Grason, J. (1970a). A Dual Linear Graph Representation for Space Filling Location Problems of the Floor Plan Type. M.I.T. Press, 170-178. 
Grason, J. (1970b). Fundamental Description of a Floor Plan Design Program. North Carolina University, 175-182.
Grason, J. (1970c). Methods for the Computer-Implement Solution of a Class of ‘Floor Plan’ Design Problems. Ph.D. Thesis, Carnegie-Mellon University, Pittsburg.
Grason, J. (1971). An Approach to Computerized Space Planning Using Graph Theory, 170-179. https://dl.acm.org/doi/abs/10.1145/800158.805070
Gero, J., Kazakov, V.(1998). Evolving Design Genes in Space Layout Planning Problems. https://www.researchgate.net/publication/222502570_Evolving_design_genes_in_space_layout_planning_problems/references
Hajian, M., & Tajik, S.A. (2017). Evaluation of Convex and Crossover Methods of Graph Theory in Analysis of Architectural Space, Naghshe Jahan, 2-7.
Hart, R.A., & Moore, G.T. (1973). The Development of Spatial Cognition: A Review. Place and Perception Report7. Department of Geography, Clark University.
Hassan, M.M.D., & Hogg, G.L. (1987). A Review of Graph Theory Applications to the Facilities Layout Problem. Omega, 15, 291-300. https://www.sciencedirect.com/science/article/abs/pii/030504838790017X
Hassan, M.M.D., & Hogg, G.L. (1991). On Constructing a Block Layout by Graph Theory. Int J Prod Res. 29(6), 1263-1278. https://www.tandfonline.com/doi/abs/10.1080/00207549108930132
Jacobs, F.R. (1987). A Layout Planning System with Multiple Criteria and a Variable Domain Representation. Manage Sci, 33,1020-1034
Jagielski, R., & Gero, J.S. (1997). A Genetic Programming Approach to the Space Layout Planning Problem. In: R. Junge (ed.), CAAD Futures, 875-884. https://link.springer.com/chapter/10.1007/978-94-011-5576-2_67
Kaku, K., & Rachamadugu, R. (1992). Layout Design for Flexible Manufacturing Systems. Eur J Oper Res. 57, 224-230. https://ideas.repec.org/a/eee/ejores/v57y1992i2p224-230.html
Krejcirik, M. (1969). Computer-Aided Plant Layout, 7-19. https://www.sciencedirect.com/science/article/abs/pii/S001044856980028X
Foulds, L. (1983). Techniques for Facilities Layout: Deciding Which Pairs of Activities Should Be Adjacent, Management Sci. 29(12), 1414-1426. https://econpapers.repec.org/article/inmormnsc/v_3a29_3ay_3a1983_3ai_3a12_3ap_3a1414-1426.htm
Leung, J. (1992). A Graph Theoretic Heuristic for Designing Looplayout Manufacturing Systems. Eur J Oper Res. 57, 243-252. https://www.researchgate.net/publication/222371615_A_graph-theoretic_heuristic_for_designing_loop-layout_manufacturing_systems
Levin, P.H. (1964). Use of Graphs to Decide the Optimum Layout of Buildings. The Architects’s Journal. 809-817.
Liggett, R. (1985). Optimal Spatial Arrangement as a Quadratic Assignment Problem, in: J. Gero (Ed.), Design Optimization, Academic Press. 1-40. https://www.semanticscholar.org/paper/1-%E2%80%93-Optimal-spatial-arrangement-as-a-quadratic-Liggett/6a4dd8a8e12e14ae711cc05bcb4a9bcf3e5bd2d1
Liggett, R., & Mitchell, W. (1981). Optimal Space Planning In Practice. Computer-Aided Design. 13(5), 277-288. https://www.sciencedirect.com/science/article/abs/pii/0010448581903171
Liggett, R.S. (2000). Automated Facilities Layout: Past, Present and Future, Automation In Construction. 9(2), 197-215, ISSN 0926-5805. http://users.metu.edu.tr/baykan/arch586/Readings/Layout/Background/Liggett00.pdf
March, L., & Steadman, P. (1971). The Geometry of Environment. London: RIBA Publications. https://books.google.com/books/about/The_Geometry_of_Environment.html?id=Bz20AAAAIAAJ
Montreuil, B., Ratliff, H.D., & Goetschalckx, M. (1987). Matching Based Interactive Facility Layout. IIE Trans. 19(3), 271-279. https://www.tandfonline.com/doi/abs/10.1080/07408178708975396
Montreuil, B., Venkatadri, U., & Ratliff, H.D. (1993). Generating a Layout from a Design Skeleton. IIE Trans. 25(1), 3-15. https://www.tandfonline.com/doi/abs/10.1080/07408179308964261
Mourshed, M., Manthilake, I., & Wright, J.A. (2009). Automated Space Layout Planning for Environmental Sustainability. IN: SASBE 2009, Proceedings of the 3rd CIB International Conference on Smart and Sustainable Built Environments, Delft, The Netherlands. 15-19 June 2009. https://repository.lboro.ac.uk/articles/Automated_space_layout_planning_for_environmental_sustainability/9432275
Michalek, J., Choudhary, R., Papalambros, P. (2002). Architectural Layout Design Optimization. https://www.cmu.edu/me/ddl/publications/2002-Michalek,Choudhary,Papalambros-EO-ArchLayout.pdf
Nassar, K. (2010). New Advances in the Automated Architectural Space Plan Layout Problem. In: Proceedings Computing in Civil and Building Engineering. https://www.semanticscholar.org/paper/New-advances-in-the-automated-architectural-space-Nassar/5ebe2e80f6e0c94df293ad95f33ea00622aece0a
Penn, A., Hillier, B., Banister, D., & Xu, J. (1998). Configurational Modelling of Urban Movement Networks. Environ Plan B Plan Design. 25(1), 59-84. https://journals.sagepub.com/doi/10.1068/b250059
Rosenblatt, M.J., & Golany, B. (1992). A Distance Assignment Approach to the Facility Layout Problem. Eur J Oper Res. 57, 253-270. https://web.iem.technion.ac.il/images/user-files/golany/papers/EJOR_92.pdf
Roth, J., Hashimshony, R., & Wachman, A. (1985). Generating Layouts with Non-Convex Envelopes .Building & Environment. 20, 211-219. https://www.sciencedirect.com/science/article/abs/pii/0360132385900368
Singh, S.P., & Sharma, R.R.K. (2006). A Review of Different Approaches to the Facility Layout Problems, Int J Adv Manuf Technol. 30, 425-433. https://link.springer.com/article/10.1007/s00170-005-0087-9
Steadman, P. (1983). Architectural Morphology: An Introduction to the Geometry of Building Plans. London: Pion Ltd. https://books.google.com/books/about/Architectural_Morphology.html?id=ppIOAAAAQAAJ
Teague, Lavette C., Jr. (1970). Network Models of Configurations of Rectangular Parallelepipeds. M.I.T. Press. 162-169.
Wang, S., & Sarker, B.R. (2002). Locating Cells with Bottleneck Machines in Cellular Manufacturing systems. Int J Prod Res. 40 (2), 403-424. https://www.researchgate.net/publication/232926950_Locating_cells_with_bottleneck_machines_in_cellular_manufacturing_systems