تحلیل تغییرات قائم آلودگی هوا در مسیر آزادی- تهرا نپارس با شبیه سازی خردمقیاس اقلیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار آب و هواشناسی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران.

2 کارشناسی ارشد اقلیم شناسی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران.

چکیده

خیابان های آزادی، انقلاب و دماوند با گذر از مناطق با هسته های جمعیتی و فعالیتی و گره های ترافیکی زیاد از شرایط آلودگی هوای شدیدی برخورداراند. در پژوهش حاضر اثر عناصر اقلیمی و کالبدی شهر بر الگوی تغییرات قائم آلودگی هوا واکاوی شد. بنابراین جهت گیری و عرض معابر، تراکم ساختمانی و نوع کاربری و همچنین شدت و جهت باد، دما و رطوبت هوا مورد پژوهش قرار گرفت. روش گردآوری داده ها و اطلاعات بر پایه ترکیبی از روش های کتابخانه ای و پیمایشی و تحلیل داده ها با روش های آماری و مدل سازی عددی انجام شد. با بهره گیری از فیلم های مرکز کنترل ترافیک شهری در تقاطع های مسیر و برآورد تعداد خودروها، میزان مصرف بنزین در واحد زمان و میزان خروجی گاز آلاینده CO معادل آن ها محاسبه شد. از مدل عددی خرداقلیم ENVI-met برای مدل سازی و شبیه سازی الگوی پراکنش آلودگی هوا استفاده شد. در این مقاله سه مقطع میدان آزادی، چهارراه ولیعصر و س هراه تهران پارس انتخاب و نتایج به دست آمده از مدل سازی تحلیل شد. میزان آلاینده منواکسید کربن در دو نمونه روز سرد و گرم سال نشا ندهنده تمرکز بیشینه این آلاینده در محدوده های به هم فشرده و متراکم چهارراه ولیعصر و ضلع شرقی میدان آزادی ب هویژه در ساعت های ابتدایی روز و همچنین فصول سرد سال است. در بعد ارتفاعی در هر سه مقطع مورد مطالعه با افزایش ارتفاع، غلظت آلاینده کاهش دارد. در نمونه پاییزه و تابستانه بیشینه ارتفاع گسترش آلودگی به ترتیب کمتر از 10 متر و بیش از 15 متر به دست آمد. سرما و افزایش چگالی هوا در نزدیکی سطح زمین و نبود ساز و کارهای صعود همرفتی در هوا عامل کاهش پراکنش قائم هوا در پاییز است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Air Pollution Vertical Variation in Path of Azadi-Tehranpars by Micro-climate Simulation

نویسندگان [English]

  • Ali Akbar Shamsipour 1
  • Ghasem Azizi 1
  • Jowan Amini 2
1 Associate Professor of Climatology, Faculty of Geography, University of Tehran, Tehran, Iran.
2 M.A. Student in Climatology, Faculty of Geography, University of Tehran, Tehran, Iran.
چکیده [English]

Emissions of road traffic status as one of the main sources of pollution in urban areas, especially in the main streets of downtown are known. Considering that most of the traffic in areas where the greatest human trafficking takes place, it is very sensitive and pollution issues will be critical. In small-scale studies of cities, buildings and their placement, height, gender and outer structures can be important in comfort climate debate, climate and pollution designs. In this context, a careful analysis of the physical and natural factors in mitigation or aggravating of pollution from small-scale numerical modeling based on a laboratory model of air flow (CFDs) namely Envi-met were used. The benefits of this method are being quantitative effect of physical and climatic urban factors in microscale temporal and spatial resolution. On the other hand the lack of a consistent and complete data of air pollution, especially in small scale cannot be done in a complete
and comprehensive review but this method to great extent resolves this problem. In the present study, pollution condition at the central part of Tehran between the west to the east along the Azadi and Tehran-pars street with a length of about 18/7 Km by numerical modeling, are discussed. At the beginning and end this region two-terminal (West and East) of the three major passenger terminals of Tehran are located. In addition, a line of Bus Rapid Transportation (BRT) in this path has caused daily movement more than 300 buses. Beginning of this path is at the main entrance of Tehran, so every day, thousands of vehicles are traveling within this area. The information used in this study includes atmospheric elements such as wind direction and speed, humidity, specific humidity and air temperature at two date on July 26, 2011 and November 30, 2010 obtained from Mehrabad synoptic stations. In addition, emissions data related to the pollutant gaseous monoxide (CO) in the same date were taken from statistical methods traffic crossings in sections and squares of path by taken films and statistical calculations. Another set of data are contains urban spatial data, surface covers of streets and square including the type and amount of vegetation, soil type, building height and density and unevenness parameters that was designed in Envi-met model. In Azadi square, the maximum concentration of pollution is around the third receptor. The lowest values is around the first and second receptors in the open spaces nearby vegetation and minor passages that wind flow was more freely between building blocks. Wind on its track passes the open spaces of Azadi
square and causes pollution dispersion while this results in its being held in dense areas of  urban structures such as the east side of the field. In other section, Valiasr cross, compressed building shape, high volume of traffic, existence Daneshjo Park in the South-east, the intersection of two main streets (Enghelab and Valiasr) has been influential in changing the concentration monoxide pollutant. CO concentrations at Valiasr cross is more on the streets, especially in the central passageway and is focused nearby number two receptors. Because the north dominant wind in the morning and South flow during the afternoon, as well as the arrival of the longitudinal passages, the pollution is transported to passageway center. The healthiest parts of this site are Daneshjo park space and between buildings away from the center of the Cross. The highest amount of CO pollution has been shown in Tehran-pars, early in the morning. But in the evening due to the increase of temperature, Air stability will disappear, so the temperature gradient causes formation of stronger wind currents and reduces the concentration of pollution. Like two previous sites in Tehranpars, with the distance from the ground level concentration of CO emissions are reduced. Generally, concentrations of pollutants in total area are influenced by fluctuations in the atmospheric condition. In other words, because of amount of inputs, emission and physical condition in all seasons and all times of the day are not fixed, what makes the pollution concentration non-steady varied condition climate and microclimate. For example, in the early morning in autumn season with low values of the temperature, inversion and the stability condition are caused by lack of wind and air. Also with increasing altitude and distance from the center of the earth surface emissions and fewer side effects, wind flows are faster and more regular and reduce effects of pollution.

کلیدواژه‌ها [English]

  • Path of Azadi- Tehran-pars
  • Tehran
  • ENVI-met
  • Air pollution
  • CO
  • Climate modeling
Amato, G.D. Cecchi, L., Amato, M.D. & Liccardi, G. (2010). Urban Air Pollution and Climate Change as Environmental Risk Factors of Respiratory Allergy: An Update, J Investig Allergol Clin Immunol, 20(2), 95-102. 
Amini, J., & Tayebi, S. (2010). Analysis of the Spatial Distribution of Tehran’s Air Pollution Cores, Case Study; autumn 2010, 3rd Geographers Students’ Conference, University of Tehran, Tehran. 
Ashok, K. (2006). Modelling PM10 Concent rations and Carrying Capacity Associated with Wood Heater Emissions in Launceston, Tasmania, Atmospheric Environment, 40.
Bemquerer, F., Rasia, C. & Leitekruger, E. (2010). A Method for Simulating NOx Dispersion in an Urban Area Using ENVI-met, ACM. New York, USA, ISBN: 978-1-4503-0069-8.
Bruse, M. (2007). ENVI-met Implementation of the Gas/ particle Dispersion and Deposition Model PDDM, www.Envi-met.com.
Bruse, M. (2007). Particle Filtering Capacity of Urban Vegetation: A Micro Scale Numerical Approach, Environmental Modelling Group, INST, Geography, University of Mainz.
Brzozzowski, K. (2005). Modeling of Air Pollution on a Military Airfield. Air Force Academy, Dywizjonu.
Daly, A. & Zannetti, P. (2007). An Introduction to Air Pollution, Definitions Classification and History, Chapter1, the Inviro Group Institute, Fremont, CA (USA).
Etabi, F., Abbaspour, M., Karbasi, A.R. & Hajiseyedmirzahoseini, S.A. (2007). Modeling Particulate Matter Dispersion Using ADMS-urban Model. Science and Environment Technology, 9(1), 1-15. 
Ghanbari, H.A., & Azizi, Gh. (2009). Numerical Simulation of Tehran Air Pollution basis on Wind Pattern. Physical Geography Researches, 68, 15-32. 
Ghiaseddin, M., Hesami, Z., Etabi, F., & Mahmoudi, M. (2006). Study of Air Quality of inside the Residential Area in 1 and 5 Regions of Tehran with PM10, Journal of Environmental Studies, 32(4), 1-8.
Giselle, S. (2001). Transportation, Climatic Hazards and Pollution. (Shahriyar Khaledi, Trans.). University of Shahid Behashti, Tehran. 
Hoseinpour, Z. (2011). Synoptic Analysis of Tehran’s Air Pollution (Emphasis on PM10). Master Thesis, Faculty of Geography, University of Tehran, Tehran. 
Karra, S., Malki-Esphtein, L. & Neophyton, M. (2011). The Dispersion of Traffic Related Pollutants Across a non Hemogeneous Street Canyin, Environmental Sciences, 4, 25-34.
Madadi, H., Ashrafzadeh, M.R., Najafi, N., & Sheikhzade, B. (2009). Modelling NOx and CO Dispersion from Natural Gas Burning in Semnan Mixing Cycle Powerhouse. 2nd International Symposium on Environmental Engineering, Tehran. 
Nikolova, I., Janssen S., Vos P., Vrancken K., Mishra V. & Berghmans P. (2011). Dispersion Modelling of Yeraffic of Induced Ultra-fine Particles in Street Canyon in Antwerp, Belqium and Comparision with Observations, Science of the Total Environment, 412-413, 336-343.
Ranjbar-Saadatabadi, A., Aliakbari-bidokhti, A., & Sadeghhoseini, S.A. (2005). Urbanization and Heat Island Effects on Air and Local Climate Condition on Tehran Megacity basis on Mehrabad and Varamin Weather Stations. Journal of Environmental Studies, 39, 59-68.
Sharifi, M. (2009). Study of Air Pollution from Passenger Terminal in the Surrounding Urban Texture, Master Thesis, University of Tehran, Tehran.
Stewart, I.D. & Oke, T. R. (2012). Local Climate Zones for Urban Temperature Studies, Bull. Amer. Meteor. Society, 93, 1879–1900.
Wania, A., Bruse, M., Blond, N., & Weber C. (2012). Analyzing the Influence of Different Street Vegetation on Traffic Induced Particle Dispersion Using Micro Scale Simulations, Journal of Environmental Management, 94, 91-101.
World Health Organization. (1996). Urban Air Pollution in Megacities of the World, Atmospheric Environmental, 30, 681-686, WWW.ENVI-met.com.
Yadghar, A.M. (2006). Modelling and Analysis Pollutant Dispersion from Mobile Sources base on GIS. Master Thesis, University of Tehran, Tehran. 
Zawar- reza, P., Appelhans, T., Gharaylou, M. & Shamsipur, A. (2010). Meso Scale Control on Particulate Matter Pollution for Mega City in a Semi-arid Mountainous Environment, Environment and Pollution, 41, 166-183.
Zawar-Reza, P., Kingham, S. & Jamie, P. (2005). Evaluation of a Year-long Dispersion Modelling of PM10 using the Mesoscale Model TAPM for Christchurch –Newzland. Science of the Total Environment, 349, 249-259.