بررسی تأثیر آتریوم بر شرایط محیط داخلی، آسایش حرارتی ساکنان و میزان مصرف انرژی در ساختمان‌های اداری، نمونه موردی: شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار معماری، دانشکده فنی و مهندسی، دانشگاه ایلام، ایلام، ایران

2 کارشناس ارشد معماری، دانشکده هنر و معماری، دانشگاه پیام نور تهران، تهران، ایران.

3 استادیار گروه معماری، دانشکده هنر و معماری، دانشگاه پیام نور تهران، تهران، ایران.

چکیده

 طراحی ساختمان‌هایی با ویژگی صرفه‌جویی در انرژی و نگهداشت منابع طبیعی، در زمره اصلی‌ترین مسئولیت‌های معماران قرار می‌گیرد. آتریوم به‌عنوان یک فضای باز داخلی است که علاوه بر تأثیر آن بر بهینه‌سازی مصرف انرژی، می‌تواند اثرات مثبتی بر درک افراد از محیط داخل داشته باشد. در این تحقیق دو نمونه مطالعاتی ساختمان اداری دارای آتریوم و بدون آتریوم در شهر تهران انتخاب شدند که از نظر خصوصیات مساحت، تعداد طبقات، نسبت مساحت بازشوهای بیرونی به مساحت دیوار، سیستم گرمایشی و سرمایشی، میانگین تعداد پرسنل در متر مربع، جنس مصالح و نوع عایق‌بندی کمترین تفاوت را باهم داشتند. هدف از این مطالعه بررسی مقایسه ای شرایط محیط داخلی و میزان مصرف انرژی در هر دو ساختمان ادارای دارای آتریوم و ساختمان اداری بدون آتریوم جهت بهینه‌سازی مصرف انرژی و تعدیل شرایط فیزیکی محیط کار می باشد. در این تحقیق از مطالعات میدانی شامل تکمیل پرسشنامه و اندازه‌گیری عوامل محیطی توسط حسگرهای حرارتی در هر دو ساختمان در فصل تابستان استفاده شده است. جهت تجزیه‌وتحلیل داده‌ها از تحلیل مؤلفه‌های اصلی (PCA )، آزمون تی مستقل، آزمون ناپارامتریک من ویتنی، تک متغیره، آنالیز تجزیه واریانس یک طرفه، تحلیل چند دامنه‌ای دانکن و همبستگی اسپیرمن استفاده شده است. نتایج تحقیق نشان می‌دهند، وجود آتریوم اثر مثبت معنی داری بر رضایت مندی کارمندان از شرایط محیط داخلی از نظر آسایش حرارتی، کیفیت نور و آسایش بصری داشته است. همچنین میزان روشنایی روز در ساختمان دارای آتریوم در مقایسه با ساختمان بدون آتریوم سطح بالاتری داشته درحالی که میزان مصرف انرژی الکتریکی، رطوبت نسبی و درجه حرارت آن پایین نبوده است. به‌طورکلی نتایج نشان داده که وجود آتریوم تأثیر معنی‌داری در کاهش مصرف انرژی و ایجاد آسایش حرارتی در این ساختمان اداری داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Atrium on Indoor Environment, Occupant’s Thermal Comfort and Energy Consumption in Office Buildings, Case Study: Tehran

نویسندگان [English]

  • Nazanin Nasrollahi 1
  • Safora Abdollahzadeh 2
  • Sanaz Litkohi 3
1 Associate Professor of Architecture, Faculty of Technology and Engineering, University of Ilam, Ilam, Iran
2 M.A of Architecture, Faculty of Art and Architecture, Payame Noor University, Tehran, Iran.
3 Assistant Professor of Architecture, Faculty of Art and Architecture, Payame Noor University, Tehran, Iran.
چکیده [English]

Building design including energy saving features and natural resources protection, is one of the main responsibilities of architects. Atrium is an open interior space that can be potentially related to the exterior environment and in addition to its impact on energy optimization, it can have positive effect on the occupants’ indoor environmental perceptions. In this study two case studies of office buildings (with and without atrium) in Tehran were selected. These buildings had minimum differences in terms of number of floors, the ratio of the area of exterior openings to wall area, heating and cooling systems, average number of staff per square meter, construction materials and insulation properties. The aim of this study was to investigate and compare the quality of indoor environmental conditions and energy consumption in the both office buildings, with central atrium and without atrium to optimize energy consumption and workplace conditions. In this research, field experiments, including questionnaires and physical measurements of environmental parameters simultaneously were used. The field experiments (data logger and questionnaire) were conducted during the summer in the both buildings. The Field studies were carried out by environmental measurement methods through research tools including thermometers and lux meters. The measured variables are temperature, relative humidity and lighting intensity. To measure the temperature and humidity simultaneously, the Standard Thermometer with an accuracy of ± 0.1 ° C is used and a Standard st-1309 lux meter is used to measure the light intensity. Data loggers are positioned away from the direct effects of energy sources such as solar radiation, cooling systems, and etc. The device is placed in the workplace near the staff table. The field measurements were carried out on July 2013, for three working days. For measuring lighting data, the amount of daylighting in all directions and in all floors was recorded by lux meter device in the both studied buildings at 8-10 am and 12-14 pm. To develop the questionnaire, the format of the international standard questionnaire of ASHRE Standard 55 (2013) and the Center for the Built Environment (CBE) in the University of California-Berkeley were used. Then to adapt the questionnaire with the research hypotheses, changes were made to the questions and also new questions were added to the text of the questionnaire. In the format of the questionnaire, the main questions are divided into various categories such as personal and background questions, satisfaction questions and questions related to the quality of the indoor environment. For data analysis, Principal Component Analysis (PCA), independent t-test, Mann-Whitney test, univariate analysis, variance analysis, the Spearman correlation analysis and Duncan’s multiple range test were used. The results of the questionnaire response show that there was a significant difference between the votes of the staffs in the two studied offices (with and without atrium), including; the satisfaction of the cooling and heating conditions of the workplace, the thermal conditions of the working environment in the summer and winter, the temperature conditions in the very hot / Warm air/ cold weather conditions, the reason for perceived thermal discomfort in the summer, the need to turn on the lamps during different days  of the year, the required amount to turn on the lamp in cloudy days, the satisfaction with natural light in the workspace, the satisfaction degree with visual comfort in terms of glare and contrast. The results showed that there was a significant positive effect of atrium on staffs’ satisfaction regarding the indoor environment conditions of thermal comfort, lighting quality and visual comfort. The data show that the indoor air temperature of the Ministry of Health (without atrium) is on average 25 ° C and warmer than the railway building (with atrium). There is also a small difference in comparison between measured relative humidity data between the two buildings. The comparison of the results based on the Duncan test showed that the southern direction received the highest amount of day lighting while the north and west directions had the lowest amount similarly in the both studied office buildings. Furthermore, the results showed that the amount of day lighting was higher in the building with atrium compared to the building without atrium, while electrical energy consumption, relative humidity and temperature was lower in the building with atrium. In general, the result showed that atrium had a significant effect in reducing energy consumption and providing thermal comfort in this office building. In order to generalize the results of the research, it is necessary to conduct such research in a large number of similar study samples.

کلیدواژه‌ها [English]

  • Atrium
  • Energy
  • Daylight
  • Thermal Comfort
  • Office Building
Abd Halid, H., Wang, F. (2012). Design and Low Energy Ventilation Solutions for Atria in the Tropics. Sustainable Cities and Society, 2(1), 8-28.
Abdoli, M. & Fasihi, A. (2006). The Climatic Impact of Tehran on Energy Consumption in Residential Buildings. 4th Conference on Energy Conservation in Building. Tehran, Iran.
Aldawoud, A. (2013). The Influence of the Atrium Geometry on the Building Energy Performance. Energy and Buildings, 57, 1-5.
Aldawoud, A., Clark, R. (2008). Comparative Analysis of Energy Performance between Courtyard and Atrium in Buildings. Energy and Buildings, 40(3), 209-214.
ASHRE Standard, 5. (2013). Thermal Environmental Conditions for Human Occupancy. Atlanta: ASHRAE.
Brown, G., DeKay , M. (2001). Sun, Wind, and Light: Architectural Design Strategies. New York.
Bryn, I. (1993). Atrium Buildings Environmental Design and Energy Use. Ashrae Transactins, 99 (part 1).
Center of the Built Environment (CBE). (n.d.). Berkeley. California. Retrieved 06 07, 2013, from http://cbe.berkeley.edu/research/index.htm.
Chun, C., Kwok, A., Mitamura, T., Miwa, N. & Tamura, A. (2008). Thermal Diary: Connecting Temperature History to Indoor Comfort. Building and Environment, 43, 877–885.
Etzion, Y., Pearlmutter, D., Erell, E., & Meier, I. (1997). Adaptive Architecture: Integrating Low Energy Technologies for Climate Control in Desert. Automation in Construction, 6(5-6), 417-425.
Fordham, M. (2000). Natural Ventilation. Renewable Energy, 19, 17-37.
Givoni, B. (1976). Man, Climate and Architecture. New York: Elsevier Press.
Guimarães-Costa, N., Pina, E. & Cunha, P. (2008). The Atrium Effect of Website Openness on the Communication of Corporate Social Responsibility. Corporate Social Responsibility and Environmental Management, 15, 43-51.
Hung, W. (2003). Architectural Aspects of Atrium. International Journal on Engineering Performance-based Fire Codes, 5(4), 131-137.
Laouadi, A. & Atif, M. (1999). Comparison between Computed and Field Measured Thermal Parameters in an Atrium Building. Building and Environment, 34, 129-138.
Laouadi, A., Atif, M. & Galasiu, A. (2002). Towards Developing Skylight Design Tools for Thermal and Energy Performance of Atriums in Cold Climates. Building and Environment, 37, 1289-1316.
Madani, R., Mokhtari, M. & Gharaati, M. (2012). The Role of Atrium in Optimizing Fuel Consumption in Office Buildings. 2nd Conference on Environmental Planning and Management (EPM). Tehran, Iran.
Martín, H., Martínez, R. & Gómez, V. (2008). Thermal Comfort Analysis of a Low Temperature Waste Energy Recovery System: SIECHP. Energy and Buildings, 40, 561–572.
Moosavi, L., Mahyuddin, N., & Ghafar, N. (2015). Atrium Cooling Performance in a Low Energy Office Building in the Tropics, A Field Study. Building and Environment, 94(1), 384-394.
Ochoa, C. & Capelute, I. (2006). Evaluating Visual Comfort and Performance of Three Natural Lighting Systems for Deep Office Buildings in Highly Luminous Climates. Journal of Building & Environment, 41, 1128-1135.
Sekkei, Y. (1989). Amenity Space for Interaction: Recent Works. Process Architecture, 16-37.
Sharples, S. & Lash, D. (2007). Daylight in Atrium Building. Architectural Science Review, 50, 301-312.
Szokolay, S. (1987). Thermal Design of Buildings. Australia: Raia Education Division Canberra.
Tsutsumi, H., Tanabe, S., Harigaya, J., Iguchi, Y. & Nakamura, G. (2007). Effect of Humidity on Human Comfort and Productivity after Step Changes from Warm and Humid Environment. Building and Environment, 42, 4034 – 4042.