مروری بر رابطه معماری بومی و اقلیم با بررسی شاخص‌های آسایش حرارتی، مورد مطالعاتی: شهر نوشهر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد سمنان، سمنان، ایران.

2 استادیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشیار گروه جغرافیا، دانشکده علوم انسانی، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.

چکیده

ویژگی‌های آب و هوایی هر منطقه نقش برجسته‌ای در شکل‌دهی معماری آن منطقه دارد. در گذشته معماران و مردم توجه بسیار زیادی به اقلیم1 و آسایش حرارتی داشته‌اند. شناخت پتانسیل‌های طبیعی برای ایجاد آسایش توسط شاخص‌های آسایش حرارتی2 و برداشت از الگوهای معماری بومی که پاسخگوی مسائل اقلیمی بوده‌اند می‌تواند در شکل‌دهی بهتر معماری امروز مفید باشد. همواره معماری، استفاده از تجارب، سنت‌ها و شیوه‌های زندگی بوده و هست که مبانی اصلی معماری بومی را تشکیل می‌دهد. به‌طور کلی اجتماع‌پذیری فضاهای جمعی و سکونت در یک مکان ملزوم وجود آب و هوای مناسب و شرایط آسایش می‌باشد. برای رسیدن به آسایش حرارتی باید ویژگی‌های اقلیمی هر ماه را شناسایی کرد و از تدابیر معماری برای مقابله یا استفاده از آن بهره گرفت. هدف از پژوهش حاضر بررسی شاخص‌های آسایش حرارتی و ارائه دستورالعمل‌های طراحی و مقایسه نتایج به‌دست آمده با معماری بومی منطقه است. برای دستیابی به اهداف تحقیق از دوره آماری 40 ساله (2016-1977) ایستگاه سینوپتیک نوشهر به روش تحلیلی-توصیفی بهره گرفته شده است. برای شناسایی گروه اقلیمی منطقه و طول دوره خشکی از فرمول دمارتن، آمبرژه و نمودار آمبروترومیک استفاده شده و برای تعیین محدوده آسایش حرارتی از شاخص‌های اولگی، گیوانی3 و ماهانی4 بهره گرفته شده است. با بررسی‌های به‌عمل آمده مشخص شد که شهر نوشهر دارای اقلیم فرامرطوب می‌باشد و به‌لحاظ آب و هوایی، شش ماه از سال دارای هوای سرد و کمی سرد، چهار ماه راحت و دو ماه گرم و شرجی است. دستورالعمل‌های به‌دست آمده از شاخص‌ها با معماری بومی منطقه در یک راستا قرار دارند، لذا بهره‌گیری از الگوهای معماری بومی به‌عنوان الگویی اثبات شده پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the Relationship between Vernacular Architecture & Climate through Studying Thermal Comfort Indicators in Nowshahr City

نویسندگان [English]

  • Hamidreza Delfanian 1
  • Mehdi khakzand 2
  • Saeid Kamyabi 3
1 Ph.D. Student of Architecture, Department of Engineering, School of Architecture, Semnan Branch, Islamic Azad University, Semnan, Iran.
2 Assistant Professor of Architecture, Department of Architecture, School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Iran.
3 Asscociate Professor of Geography, Faculty of Humanities, Semnan Branch, Islamic Azad University, Semnan, Iran.
چکیده [English]

The climatic characteristics of each region have a remarkable role in shaping the architecture of that area, thus having a great influence on the formation of the architecture by the people. In the past, architects and people have paid much attention to climate and thermal comfort. Understanding natural potentials for comfort by thermal comfort indicators and harvesting vernacular architectural patterns that respond to climate issues can be helpful in shaping the architecture of today. Architecture is always accompanied by experiences, traditions, and lifestyle, which form the core of vernacular architecture. In general, the socialization of communal and residential spaces in a place is necessary for the proper climate and comfort conditions. To achieve thermal comfort, climate features should be identified every month and architectural measures be used to counteract or use it. The purpose of this study was to investigate the thermal comfort indicators and provide design guidelines and comparison of the results with the local architecture. In order to achieve the research objectives of the 40-year statistical period (1977-2016), the synoptic station of Nowshahr was utilized using analytical-descriptive method. To identify the climatic group of the region and the length of the period of drought, the formula of Demarthen, Amberge and Ombrothermic diagram was used and to determine the range of thermal comfort, Givoni and Mahoney Indices were utilized. The results of this study revealed that the city of Nowshahr has a transboundary climate and has a cold climate of about 6 months, has four months of warmth and two months of warm and hot weather. The guidelines derived from the indices with the vernacular architecture of the region are in the same direction, so using vernacular architecture patterns as a proven model is suggested. According to the studies on thermal comfort indicators, the use of synchronous fundamentals of synchronization should be taken into consideration, including the prevention of the effect of winter cold winds and the use of breeze. Sea-to-coast, shade, and air flow in hot weather, direct sunlight during cold weather and benefiting from the solar power, ventilation, or humidification, and the use of insulation are recomneded. Moisture protection, building protection against rain, connection between indoor and indoor areas and preventing humidity are also important. In the meantime, in the city of Nowshahr, creating facilities for creating ambient air in the interior is more important than protecting the building against sunlight during hot weather and utilizing solar energy during cold weather. It is also intended to locate buildings in the northern part of the south with the eastern extension of the west, so that the architecture of the building is low in the open space. Considering the orientation of the building towards the western east axis to protect the building from moisture and precipitation due to the moderate and humid climate of Nowshahr, it is necessary to achieve comfort in architectural design with the region’s climate. The size of the openings in the east and west is 20 to 40 percent, and in the north and south it is 40 to 80 percent.
The results of the case study of vernacular buildings of Mazandaran province indicate how much physical comfort in vernacular houses is considered and the proof of the adaptation of residents’ experiences and thermal comfort indicators can prove the correctness of the modeling of these buildings. One of these patterns is the increase of blindness, the use of large openings, lightweight materials with relatively low thermal capacity, Chinese seats, the use of ductwork and doors and tiles, and the establishment of interconnected buildings in the middle sections of the southern slope, the use of sloping roofs, the use of thermal insulators in walls and roofs, the use of different types of curtains and moving networks (insulation) behind the windows, the use of stretched planes with narrow sections (the expansion of the plan in the direction of the eastern western direction), the prediction of outdoor spaces suitable for various activities: porch, hallways and terraces ,use of roof rails, covered porch, balconies or canopies to create a complete shadow over the outer surface of glass windows, openings and sun blinds. Today’s architecture is the result of our neglect of the physical conditions of the inhabitants and past experiences and the introduction of Western architecture without localization. The continuation of this process intensifies the aesthetic priority of comfort and will further increase the use of fossil fuels and eliminate its identity. Therefore, it is suggested that, by referring to the past architecture in each climate and using their tried and confirmed solutions, the thermal comfort conditions be provided by the climate-compatible architecture.

کلیدواژه‌ها [English]

  • Climate
  • Thermal Comfort Indices
  • Ombrothermic
  • Baruch Givoni
  • Mahoney
Alijani, B., & Kaviani, M. (2003). The Basics of Water and Climate. Tehran, Semat Press.
Alipour, A., & Sorkhare, A. (2014). A Survey of the Typology of the Native Architecture of the Caspian Sea, the Architecture of Japan and its Comparative Study with Sustainable Architecture, Hamedan. The First National Conference on New Horizons in Sustainable Development and Sustainable Development of Architecture, Civilization, Tourism, Energy and the Urban Environment and the Countryside.
Bozorgmehr, K., & Saravi Salahuddin Kala, A. (2013). Investigating Climate Elements on Urban Architecture; Case Study: Nowshahr City. First Conference on Architectural and Sustainable Urban Factors, Mashhad, Department of Applied Research.
Givoni, B., Noguchi, H., Saaroni, O., Pochter, Y., & Yaacov, N. (2002). Outdoor Comfort Research Issues. Energy and Buildings, 1462, 1–10.
Jahanbakhsh, S., Hadiani, M., Rezaei, B., & Din Pajuh, M. (2010). Modeling the Climate Change Parameters in Mazandaran Province. Fourth International Congress of Geographers of the Islamic World, 25-27, Zahedan, Iran.
Kamyabi, S. (2015). Application of Thermal Comfort Indicators in Sustainable Housing Design; Case Study: of Torbat Heydarieh Town. Journal of Mechanical Engineering and Vibration, 6(2).
Kasmaei, M. (1988). Climate and Architecture of Khuzestan. Khorramshahr, Center for Research and Housing Press.
Kasmaei, M. (2002). Climate and Architecture. Tehran: Khak Press.
Mohammadi Pour, P. (2013). Investigating the Native Architecture of Mazandaran to Achieve Native Design Principles and Explaining the Physical Identity of Mazandarani Architecture. The First National Conference on the Future Building, Sari, Sari Engineers’ Center.
Moradi, S. (2005). Adjustment of Environmental Conditions. Tehran: Ashian Publications.
Nourmohammadi, S. (2009). Understanding the Nature of Architectural Space by Contemplating the Similarity of Space in Indigenous Settlements. Dr.Sci. Architecture, Faculty of Architecture, College of Fine Arts, Tehran University.
Pallasma, J. (1996). The Careful Writer: A Modern Guide to English Usage. New York: Athenaeum.
Raziei, T., Arasteh, P.D., & Saghafian, B. (2005). Annual Rainfall Trend in Arid and Semi- arid Regions of Iran.ICID21st European Regional Conferance.
Saroj, G. (2011). Sustainable Wind Energy System: Role of Energy Policy and Security-A Case Study from India.Journal of Economics and Sustainable Development, 2(5), 98.
Watson, O. (2003). Persian Lustre Ware. (Sh. Zakeri, Trans.).Tehran: Soroosh.
Wiebke, K., Bert, G., Heusinkveld, S., & Maarten, H. (2015). Summertime in the Netherlands. Building and Environment, 83, 120-128.