تحلیل مروری فرآیند معماری محاسباتی عملکردی (PCA) با تأکید بر عوامل عملکردی و کالبدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه معماری، دانشکده مهندسی معماری و شهرسازی، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

2 دانشجوی دکترای معماری، دانشکده مهندسی معماری و شهرسازی، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران (نویسنده مسئول).

10.22034/aaud.2024.355338.2698

چکیده

معماری محاسباتی عملکردی، رویکردی هوشمند به فرآیند طراحی بر مبنای عملکرد است که دارای آشفتگی‌های مفهومی زیادی در بین برخی دانشجویان، طراحان و پژوهشگران است. همچنین، این مفهوم، دارای عوامل مختلفی بسته به موضوع طراحی است؛ که نیاز به بررسی، اولویت‌سنجی و تحلیل دارد. هدف این مطالعه، تحلیل مروری معماری محاسباتی عملکردی بر مبنای روش‌های محاسبات تکاملی و ازدحام و تبیین عوامل عملکردی و کالبدی آن است. روش تحقیق این پژوهش با رویکردی کمی- کیفی و جامع‌نگر، تحلیل محتوای اسنادی بر مبنای ادبیات موضوعی معماری محاسباتی عملکردی است. جامعه آماری این تحقیق، پژوهش‌های انجام‌شده از حدود 2002 تا 2021 میلادی و نمونه‌گیری به‌صورت هدفمند و با ساختار گلوله برفی است. تحلیل داده‌ها از طریق بررسی توصیفی و آزمون‌های همبستگی و شانون بر روی موضوعات و عوامل، انجام ‌شده است. یافته‌ها نشان می‌دهد که پژوهش‌ها در حوزه معماری محاسباتی عملکردی در سه موضوع پوسته، فرم و پیکربندی ساختمان انجام ‌شده که در این میان، سایه‌اندازی، ابعاد پنجره، جانمایی پنجره و نسبت پنجره به دیوار، از مهم‌ترین عوامل فرم‌یابی پوسته ساختمان و طراحی نما، فرم کلی، ارتفاع طبقه و تعداد ساختمان‌ها از مهم‌ترین عوامل فرم‌یابی طراحی مولد فرم ساختمان و موقعیت فضایی، ماتریس مجاورت و شبکه‌ای از مهم‌ترین عوامل فرم‌یابی طراحی مولد پیکربندی ساختمان می‌باشند. بر اساس یافته‌ها، نتیجه‌گیری می‌شود که معماری محاسباتی عملکردی، به‌عنوان یک رویکرد طراحی مبتنی بر عملکرد، اشتراک سه مفهوم طراحی مولد، طراحی الگوریتمیک و طراحی پارامتریک، با تمرکز بر ارزیابی و بهینه‌سازی عملکرد است. همچنین، بر اساس یافته‌ها، می‌توان نتیجه گرفت که عوامل فرم‌یابی، دارای درجه اهمیت‌های متنوعی بر اساس موضوعات سه‌گانه هستند؛ که در این ‌بین، موقعیت فضا و ماتریس مجاورت در موضوع پیکربندی، سایه‌اندازی در موضوع پوسته و شکل کلی بنا در موضوع فرم به‌عنوان عوامل کلیدی فرم‌یابی تبیین می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Review on Performative Computational Architecture (PCA) Process Emphasizing functional and physical factors

نویسندگان [English]

  • Mohammad Sadegh Taher Tolou Del 1
  • Omid Heydaripour 2
1 Associate Professor, Member of Architecture Group, Faculty of Architectural Engineering and Urban Design, Shahid Rajaee Teacher Training University.
2 PhD Candidate of architecture, Faculty of Architectural Engineering and Urban Design, Shahid Rajaee Teacher Training University, Tehran, Iran.
چکیده [English]

Problem Statement: Performative Computational Architecture is an intelligent approach to the performance-based design process, which has a lot of conceptual confusion among some students, designers, and researchers. The purpose of the research: The purpose of this study is to systematically review Performative Computational Architecture to explain its functional and physical factors. Research Method: The research method of this research with a quantitative-qualitative and comprehensive approach is document content analysis based on literature review of Performative Computational Architecture. Data analysis has been done through descriptive analysis and correlation, regression and Shannon tests on subjects and factors. Findings: The findings show that the researches in the field of Performative Computational Architecture have been conducted in three topics of the skin, form and layout of the building. Shading, window dimensions, window placement and window-to-wall ratio are among the most important factors in determining the form of the building shell. Also, building form, floor height and the number of buildings are the most important factors in writing the building form generator design algorithm. Spatial location, proximity and network matrix are also among the most important factors in the design of the productive design of the building layout. Conclusion: Based on the findings, it can be concluded that Performative Computational Architecture, as a performance-based design approach, shares the three concepts of generative design, algorithmic design and parametric design, with a focus on performance evaluation and optimization. Also, based on the findings, it can be concluded that the factors of form finding have different degrees of importance based on three subjects.The position of the space and the proximity matrix in the subject of layout, shading in the subject of skin and the shape of the building in the subject of form are explained as the key factors of form finding.

کلیدواژه‌ها [English]

  • Performative Computational Architecture
  • Architectural Design
  • Computational Optimization
  • Swarm Intelligence
  • Evolutionary Algorithm
Abdelmohsen, Sherif M. 2013. November. Reconfiguring architectural space using generative design and digital fabrication: a Project based course. In Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics. https://doi.org/10.5151/despro-sigradi2013-0074
Adriaessens, Sigrid, Philippe Block, Diederik Veenendaal, and Chris Williams, eds., 2014. Shell structures for architecture: form finding and optimization. Routledge. https://doi.org/10.4324/9781315849270
Amrhein, Valentin, Sander Greenland, and Blakeley B. McShane. 2019. Statistical significance gives bias a free pass. European journal of clinical investigation 49(12): e13176. https://doi.org/10.1111/eci.13176
Bakhshi, Sajjad, Mohammad Reza Chenaghlou, Farzad Pour Rahimian, David J. Edwards, and Nashwan Dawood. 2022. Integrated BIM and DfMA parametric and algorithmic design based collaboration for supporting client engagement within offsite construction. Automation in Construction 133: 104015. https://doi.org/10.1016/j.autcon.2021.104015
Barbieri, Loris, and Maurizio Muzzupappa. 2022. Performance-driven engineering design approaches based on generative design and topology optimization tools: a comparative study. Applied Sciences 12(4): 2106. https://doi.org/10.3390/app12042106
Bernal, Marcelo, John R. Haymaker, and Charles Eastman. 2015. On the role of computational support for designers in action. Design Studies 41: 163-182. https://doi.org/10.1016/j.destud.2015.08.001
Blum, Christian, and Xiaodong Li. 2008. Swarm intelligence in optimization. In Swarm intelligence: introduction and applications (pp. 43-85). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74089-6_2
Bukhari, Fakhri A. 2011. A Hierarchical Evolutionary Algorithmic Design (HEAD) system for generating and evolving building design models (Doctoral dissertation, Queensland University of Technology). https://eprints.qut.edu.au/50964/
Caetano, Inês, Luís Santos, and António Leitão. 2020. Computational design in architecture: Defining parametric, generative, and algorithmic design. Frontiers of Architectural Research 9(2): 287-300. https://doi.org/10.1016/j.foar.2019.12.008
Caldas, Luisa. 2008. Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system. Advanced Engineering Informatics 22(1): 59-70. https://doi.org/10.1016/j.aei.2007.08.012
Chegari, Badr, Mohamed Tabaa, Emmanuel Simeu, Fouad Moutaouakkil, and Hicham Medromi. 2021. Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy and Buildings 239: 110839. https://doi.org/10.1016/j.enbuild.2021.110839
Cobb, Paul, Jere Confrey, Andrea DiSessa, Richard Lehrer, and Leona Schauble. 2003. Design experiments in educational research. Educational researcher 32(1): 9-13. https://doi.org/10.3102/0013189X032001009
Du, Tiantian, Michela Turrin, Sabine Jansen, Andy van den Dobbelsteen, and Jian Fang. 2020. Gaps and requirements for automatic generation of space layouts with optimised energy performance. Automation in Construction 116: p.103132. https://doi.org/10.1016/j.autcon.2020.103132
Ekici, Berk, Cemre Cubukcuoglu, Michela Turrin, and I. Sevil Sariyildiz. 2019. Performative computational architecture using swarm and evolutionary optimisation: A review. Building and environment 147: 356-371. https://doi.org/10.1016/j.buildenv.2018.10.023
Fischer, Thomas, and Christiane M. Herr. 2001, December. Teaching generative design. In Proceedings of the 4th Conference on Generative Art (pp. 147-160). Milan: Politechnico di Milano University. https://papers.cumincad.org/data/works/att/ga0129.content.pdf
Frazer, John, Julia Frazer, Xiyu Liu, Ming Tang, and Patrick Janssen. 2002. Generative and evolutionary techniques for building envelope design. In Generative Art 2002, 5th International Conference GA2002 (pp. 3-1). Generative Design Lab. https://eprints.qut.edu.au/10565/
Gan, Vincent JL. 2022. BIM-based graph data model for automatic generative design of modular buildings. Automation in Construction 134: 104062. https://doi.org/10.1016/j.autcon.2021.104062
Gerber, David, and Evangelos Pantazis. 2016. Design Exploring Complexity in Architectural Shells. Aulikki Herneoja Toni Österlund Piia Markkanen Oulu School of Architecture University of Oulu: 455. https://doi.org/10.52842/conf.ecaade.2016.1.455
Gürsel Dino, İpek. 2012. Creative design exploration by parametric generative systems in architecture. https://doi.org/10.4305/METU.JFA.2012.1.12
Hassan, Sally R., Naglaa A. Megahed, Osama M. Abo Eleinen, and Asmaa M. Hassan. 2022. Toward a national life cycle assessment tool: Generative design for early decision support. Energy and Buildings 267: 112144. https://doi.org/10.1016/j.enbuild.2022.112144
Huang, Yu, and Jian-lei Niu. 2016. Optimal building envelope design based on simulated performance: History, current status and new potentials. Energy and Buildings 117: 387-398. https://doi.org/10.1016/j.enbuild.2015.09.025
Hubka, Vladimir, and W. Ernst Eder. 1987. A scientific approach to engineering design. Design studies 8(3): 123-137. https://doi.org/10.1016/0142-694X(87)90035-4
Humppi, Harri, and Toni Österlund. 2016. Algorithm-aided BIM. In Complexity & simplicity–Proceedings of the 34th eCAADe conference (pp. 601-609). https://doi.org/10.52842/conf.ecaade.2016.2.601
Jabi, Wassim, Shwe Soe, Peter Theobald, Robert Aish, and Simon Lannon. 2017. Enhancing parametric design through non-manifold topology. Design Studies 52: 96-114. https://doi.org/10.1016/j.destud.2017.04.003
Jabi, Wassim. 2013. Parametric design for architecture. Hachette UK. https://doi.org/10.1260/1478-0771.11.4.465
Janssen, Patrick, and Rudi Stouffs. 2015, May. Types of parametric modelling. In Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) (pp. 157-166). https://doi.org/10.52842/conf.caadria.2015.157
Kalay, Yehuda E. 1989. Modeling objects and environments. John Wiley & Sons, Inc. https://doi.org/10.52842/conf.caadria.1997.187
Kiss, Benedek, and Zsuzsa Szalay. 2020. Modular approach to multi-objective environmental optimization of buildings. Automation in Construction 111: 103044. https://doi.org/10.1016/j.autcon.2019.103044
Kolarevic, Branko. 2003. September. Computing the performative in architecture. In Proceedings of the 21th eCAADe Conference: Digital Design. Graz, Austria (pp. 17-20). https://doi.org/10.52842/conf.ecaade.2003.457
Machairas, Vasileios, Aris Tsangrassoulis, and Kleo Axarli. 2014. Algorithms for optimization of building design: A review. Renewable and sustainable energy reviews 31: 101-112. https://doi.org/10.1016/j.rser.2013.11.036
Magnier, Laurent, and Fariborz Haghighat. 2010. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment 45(3): 739-746. https://doi.org/10.1016/j.buildenv.2009.08.016
Marin, Philippe, Yann Blanchi, and Marian Janda. 2015, September. Cost analysis and data based design for supporting programmatic phase. In Proceedings of the 33rd International Conference on Education and Research in Computer Aided Architectural Design in Europe (pp. 613-618). https://doi.org/10.52842/conf.ecaade.2015.1.613
Michalewicz, Zbigniew, and David B. Fogel. 2013. How to solve it: modern heuristics. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-07807-5
Mitchell, Melanie, and Charles E. Taylor. 1999. Evolutionary computation: an overview. Annual Review of Ecology and Systematics 30(1): 593-616. https://melaniemitchell.me/PapersContent/ARES1999.pdf
Mitchell, William J. 1975. The theoretical foundation of computer-aided architectural design. Environment and planning b: planning and design 2(2): 127-150. https://doi.org/10.1068/b020127
Moretti, Luigi. 1971. Ricerca matematica in architettura e urbanistica. Moebius IV, 1, pp.30-53.
Nagy, Danil, Damon Lau, John Locke, Jim Stoddart, Lorenzo Villaggi, Ray Wang, Dale Zhao, and David Benjamin. 2017. May. Project discover: An application of generative design for architectural space planning. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (pp. 1-8). https://doi.org/10.22360/simaud.2017.simaud.007
Nagy, Danil, Lorenzo Villaggi, and David Benjamin. 2018. June. Generative urban design: integrating financial and energy goals for automated neighborhood layout. In Proceedings of the Symposium for Architecture and Urban Design Design, Delft, the Netherlands (pp. 265-274).
Oxman, Rivka. 2017. Thinking difference: Theories and models of parametric design thinking. Design studies 52: 4-39. https://doi.org/10.1016/j.destud.2017.06.001
Sarıyıldız, Sevil. 2012, November. Performative computational design. In ICONARCH International Congress of Architecture and Planning; 2012: ICONARCH I-ARCHITECTURE AND TECHNOLOGY. Konya Technical University Faculty of Architecture and Design. https://research.tudelft.nl/en/publications/performative-computational-design
Shi, Xing, and Wenjie Yang. 2013. Performance-driven architectural design and optimization technique from a perspective of architects. Automation in Construction 32: 125-135. https://doi.org/10.1016/j.autcon.2013.01.015
Sonta, Andrew, Thomas R. Dougherty, and Rishee K. Jain. 2021. Data-driven optimization of building layouts for energy efficiency. Energy and Buildings 238: 110815. https://doi.org/10.1016/j.enbuild.2021.110815
Terzidis, Kostas. 2006. Algorithmic architecture. Routledge. https://www.academia.edu/6994087/Algorithmic_Architecture
Wei, Shen, Rory Jones, and Pieter De Wilde. 2014. Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings 70: 36-44. https://doi.org/10.1016/j.enbuild.2013.11.001
Wu, Shihai, Nan Zhang, Xiaowei Luo, and Wei-Zhen Lu. 2022. Multi-objective optimization in floor tile planning: Coupling BIM and parametric design. Automation in Construction 140: 104384. https://doi.org/10.1016/j.autcon.2022.104384
Yu, Wei, Baizhan Li, Hongyuan Jia, Ming Zhang, and Di Wang. 2015. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings 88: 135-143. https://doi.org/10.1016/j.enbuild.2014.11.063
Zboinska, Malgorzata A. 2015. Hybrid CAD/E platform supporting exploratory architectural design. Computer-Aided Design 59: 64-84. https://doi.org/10.1016/j.cad.2014.08.029
Zhang, P. E. N. G. Y. U., and W. E. I. G. U. O. Xu. 2018. Quasicrystal structure inspired spatial tessellation in generative design. In Proceedings of the 23rd CAADRIA Conference (pp. 143-152). https://doi.org/10.52842/conf.caadria.2018.1.143