بررسی ترکیب فضای باز و بسته شهری بر کارایی دودکش خورشیدی، مورد مطالعاتی: ساختمان اداری در اقلیم گرم و خشک شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه معماری، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران

2 استادیارگروه معماری، موسسه آموزش عالی کوثر، قزوین، ایران

3 دانشجوی کارشناسی ارشد معماری، موسسه آموزش عالی کوثر، قزوین، ایران

4 دانشجوی دکتری معماری، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران

چکیده

با توجه به رشد جمعیت جهان و بالا رفتن مصرف انرژی استفاده از راهکارهای منفعل امری بسیار مهم در توسعه کشورها است. بخش بزرگی از مصرف انرژی مربوط به صنعت ساختمان و در ساختمان‌های اداری است که با استفاده از راهکارهای منفعل چون دودکش خورشیدی می‌توان میزان مصرف انرژی را به‌طور چشمگیری کاهش داد. دودکش‌های خورشیدی تا حد زیادی به کاهش مصرف انرژی کمک کرده و از طریق جذب و ذخیره انرژی خورشیدی می‌توانند در تهویه ساختمان و گرمایش و سرمایش مورداستفاده قرار گیرند. هدف از این پژوهش بررسی تأثیر دودکش خورشیدی بر تهویه و دمای داخلی در ساختمان‌های اداری در اقلیم گرم و خشک شیراز است که ساختمان دارای فرم‌های مختلف شهری است. در این پژوهش اتاقی با دودکش خورشیدی به‌عنوان نمونه موردی در نظر گرفته شد که در پنج حالت مختلف فرم شهری است. شبیه‌سازی با استفاده از نرم‌افزارهای انسیس فلوئنت1 و کامسول2 انجام شد. با اندازه‌گیری مقادیر دمای میانگین محیط، سرعت هوای ورودی دودکش و میزان فشار هوای خارج‌شده و مقایسه آن‌ها در چهارفصل سال، نتایج حاکی از آن است که بهینه‌ترین عملکرد از نظر ایجاد تهویه مربوط به فصل تابستان است. همچنین در فصل‌های سرد باید دریچه دودکش را بست تا گرمایی که از طریق دودکش از خورشید جذب می‌شود باعث گرم شدن محیط شود. مقادیر دما، سرعت و فشار در مدل‌ها دارای اختلاف‌های بسیار کمی هستند اما یافته‌ها نشان می‌دهند که هرچه هوای ورودی و میزان فشار خروجی هوا بیشتر شود، نرخ تهویه و دفعات تعویض هوا هم بیشتر می‌شود. با اختلاف کم در فصل تابستان فرم حیاط مرکزی، بهینه‌ترین فرم شهری است که با اتصال به دودکش خورشیدی بیشترین افزایش نرخ تهویه و کاهش مصرف انرژی را دارد. بعد از این مدل، فرم شهری با حیاط سایه‌دار در ضلع شمالی و پس ‌از آن فرم دو حیاطه بهترین عملکرد را دارند.

کلیدواژه‌ها


عنوان مقاله [English]

The Impact of the Combination of Positive and Negative Spaces on the Performance of Solar Chimney; Case Study: Office Buildings in the Hot and Dry Climate of Shiraz

نویسندگان [English]

  • Mohammad Mehdi Molaei 1
  • Peiman Pilechiha 2
  • Zahra Zarrinmehr 3
  • Jalil Shaeri 4
1 Assistant Professor of Architecture, Department of Architecture, Faculty of Art and Architecture, Bu-ali Sina University, Hamadan, Iran.
2 Assistant Professor of Architecture, Department of Architecture, Kowsar Institute of Higher Education, Qazvin, Iran
3 M.A. Student of Architecture, Kowsar Institute of Higher Education, Qazvin, Iran.
4 Ph.D. Student of Architecture, Faculty of Arts, Tarbiat Modares University, Tehran,Iran.
چکیده [English]

Given the intense rise of the world's population and ever-increasing energy consumption, the application of passive solutions is of paramount importance to the development of countries. A large share of energy consumption is attributed to the construction industry and office buildings, whose consumption levels can be significantly reduced through passive solutions such as solar chimneys. Solar chimneys, also known as thermal chimneys, greatly contribute to reduced energy consumption and thus can be employed for building ventilation, as well as heating and cooling by absorbing and storing solar energy. The present study aims to examine the effect of the solar chimney on ventilation and indoor temperature of office buildings in the hot and dry climate of Shiraz City, where buildings have different urban forms. In this study, a room with a solar chimney, in five different urban forms, is considered as a case study. The simulation is performed using ANSYS Fluent and Comsol Multiphysics software. By measuring the mean ambient temperature, inlet air velocity of the chimney and the amount of exhaust air pressure and comparing them in all four seasons of the year, it is found that the best performance in terms of ventilation is related to the summer season. Also, in cold seasons, the chimney should be closed so that the heat absorbed from solar radiation by the chimney keeps the environment warm. The values of temperature, velocity and pressure are only slightly varying in the models, but the findings indicate that the more the inlet air and the outlet air pressure, the higher the ventilation rate and the air change rate. With a slight difference, in the summer, the central courtyard is the most optimal urban form, which offers the highest increase in ventilation rate and decrease in energy consumption by being connected to a solar chimney, followed by the shaded courtyard on the north side and then the two-courtyard form.

کلیدواژه‌ها [English]

  • Solar Chimney
  • Air Conditioning
  • Combination of Negative and Positive Spaces
Atashinjabin, A., & Yazdani, H. (2016). Form Effect on Building Energy Consumption by Inventory Analysis by Design Builder in Kish Island. Civil Engineering, Architecture, Urban Planning, and Geography Science in Ancient and Contemporary Iran. Tehran. https://www.civilica.com/Paper-SCEAUG01-SCEAUG01_115.html
Afonso, C., & Oliveira, A. (2000). Solar Chimneys: Simulation and Experiment. Energy and Buildings, 32(1), 71-79. https://doi.org/10.1016/s0140-6701(00)94585-5
Bansal, N.K., Mathur, R., & Bhandari, M.S. (1994). A Study of Solar Chimney Assisted Wind Tower System for Natural Ventilation in Buildings. Building and Environment, 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6
Barzegar, Z., & Heidari, S. (2013). Investigation of the Effects of Building Envelopes Received Solar Radiation on Residential Energy Consumption: A Case of SW and SE Orientation in Shiraz. https://dx.doi.org/10.22059/jfaup.2013.36356
Bassiouny, R., & Korah , N.S. (2009). Effect of Solar Chimney Inclination Angle on Space Flow Pattern and Ventilation Rate. Energy and Buildings, 41(2), 190-196. https://doi.org/10.1016/j.enbuild.2008.08.009
Charvat, P., Jicah, M., & Stetina, J. (2004). Solar Chimneys for Ventilation and Passive Cooling. In World Renewable Energy Congress, Denver, USA. https://www.researchgate.net/profile/Pavel_Charvat/publication/264882993_SOLAR_CHIMNEYS_FOR_VENTILATION_AND_PASSIVE_COOLING/links/53fdd93c0cf22f21c2f85410.pdf
Chantawong, P., Hirunlabh, J., Zeghmati, B., Khedari, J., Teekasap, S., & Win, M. M. (2006). Investigation on Thermal Performance of Glazed Solar Chimney Walls. Solar Energy, 80(3), 288-297. https://www.sciencedirect.com/science/article/pii/S0038092X05000940
Chen, Z.D., Bandopadhayay, P., Halldorsson, J., Byrjalsen, C., Heiselberg, P., & Li, Y. (2003). An Experimental Investigation of a Solar Chimney Model with Uniform Wall Heat Flux. Building and Environment, 38(7), 893-906. https://doi.org/10.1016/s0360-1323(03)00057-x
Chungloo, S., & Limmeechokchai, B. (2009). Utilization of Cool Ceiling with Roof Solar Chimney in Thailand: The Experimental and Numerical Analysis. Renewable Energy, 34(3), 623-633. https://doi.org/10.1016/j.renene.2008.05.026
Dong, B., Cao, C., & Lee, S. E. (2005). Applying Support Vector Machines to Predict Building Energy Consumption in Tropical Region. Energy and Buildings, 37(5), 545-553. https://www.sciencedirect.com/science/article/pii/S0378778804002981
Ghiabaklou, Z. (2013 ). Fundamentals of Building Physics 2 Environmental Control, ACECR Publication, Amirkabir University of Technology Branch, Tehran.
Gilani, S., & Mohammad Kari, B. (2011). Investigation of Greenhouse’s Thermal Performance in Residential Buildings of Cold Climate Case Study: City of Ardebil. Modares Mechanical Engineering, 11(2), 147-157. http://journals.modares.ac.ir/files/mme/user_files_749497/nejadiamin-A-15-13618-6-7c5793f.pdf
Gholami, M., Mofidi Shemirani, M., & Fayaz, R. (2018). A Modelling Methodology for a Solar Energy-efficient Neighbourhood. Smart and Sustainable Built Environment, 7(1), 117-132. https://doi.org/10.1108/SASBE-10-2017-0044
Hirst, E., Goeltz, R., & Carney, J. (1982). Residential Energy Use: Analysis of Disaggregate Data. Energy Economics, 4(2), 74-82. https://www.sciencedirect.com/science/article/pii/014098838290024X
Jaber, S., & Ajib, S. (2011). Optimum, Technical and Energy Efficiency Design of Residential Building in Mediterranean Region. Energy and Buildings, 43(8), 1829-1834. https://www.sciencedirect.com/science/article/pii/S0378778811001022
Kasmaei, M. (2003). Climate and Architecture. Soil Publication, Esfahan., Iran.
Khamse, V. (2010). Solar Chimney and Building Ventilation, HVAC Magazine, 7. https://www.magiran.com/p821538
Khanal, R., & Lei, C. (2011). Solar Chimney-A Passive Strategy for Natural Ventilation. Energy and Buildings, 43(8), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035
Khanal, R., & Lei , C. (2012). Flow Reversal Effects on Buoyancy Induced Air Flow in a Solar Chimney. Solar Energy, 86(9), 2783-2794. https://doi.org/10.1016/j.solener.2012.06.015
Khedari, J., Boonsri, B., & Hirunlabh, J. (2000). Ventilation Impact of a Solar Chimney on Indoor Temperature Fluctuation and Air Change in a School Building. Energy and Buildings, 32(1), 89-93. https://doi.org/10.1016/s0378-7788(99)00042-0
Lee, K.H., & Strand, R.K. (2009). Enhancement of Natural Ventilation in Buildings Using a Thermal Chimney. Energy and Buildings, 41(6), 615-621. https://doi.org/10.1016/j.enbuild.2008.12.006
Miyazaki, T., Akisawa, A., & Kashiwagi, T. (2006). The Effects of Solar Chimneys on Thermal Load Mitigation of Office Buildings Under the Japanese Climate. Renewable Energy, 31(7), 987-1010. https://doi.org/10.1016/j.renene.2005.05.003
Moshfegh, B., & Sandberg, M. (1998). Flow and Heat Transfer in the Air Gap Behind Photovoltaic Panels. Renewable and Sustainable Energy Reviews, 2(3), 287-301. https://doi.org/10.1016/s1364-0321(98)00005-7
Nasab, A.M., Pilechiha, P., & Hajian, M. (2019). A Justified Plan Graphical Mathematical Analysis of Traditional Houses in Moderate and Humid Climate of Iran. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. 10(9). https://doi.org/2010.14456/ITJEMAST.2019.113
Pantavou, K., Theoharatos, G., Mavrakis, A., & Santamouris, M. (2011). Evaluating Thermal Comfort Conditions and Health Responses during an Extremely Hot Summer in Athens. Building and Environment, 46(2), 339-344. https://doi.org/10.1016/j.buildenv.2010.07.026
Pilechiha, P., Mahdavinejad, M., Mirhosseini, S.N., & Ahmadi, J. (2019). Depth Optimisation of Double Skin Facade, Considering Thermal Properties: Case Study of Karaj, Iran. African Journal of Engineering Research, 7(3), 57-63. http://www.netjournals.org/pdf/AJER/2019/3/19-028.pd
Punyasompun, S., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2009). Investigation on the Application of Solar Chimney for Multi-Storey Buildings. Renewable Energy, 34(12), 2545-2561. https://doi.org/10.1016/j.renene.2009.03.032
Saghafi, M., & Fakhari, M. (2012). The Effect of Solar Chimney on Building Ventilation in Different Climates of Iran. Naqshejahan-Basic Studies and New Technologies of Architecture and Planning, 2(2), 43-54. http://journals.modares.ac.ir/article-۲-۱۱۵۶۳-fa.html
Sahebzadeh, S., Dalvand, Z., Sadeghfar, M., & Heidari, A. (2018). Vernacular Architecture of Iran’s Hot Regions; Elements and Strategies for a Comfortable Living Environment. Smart and Sustainable Built Environment. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/SASBE-11-2017-0065
Shamsai, A., Mahmoudi, B., Sarlak, M., & Vosoughifar, H. R. (2011). Numerical Modeling of Air Flow in Solar Chimney. Civil Engineering Infrastructures Journal, 45(4), 437-442. https://journals.ut.ac.ir/article_23743_0c7afe77a0b8819cc7c4ed8027b296cb.pdf
Swan, L.G., & Ugursal, V.I. (2009). Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819-1835. https://doi.org/10.1016/j.rser.2008.09.033
Yao, J., & Zhu, N. (2011). Enhanced Supervision Strategies for Effective Reduction of Building Energy Consumption–A Case Study of Ningbo. Energy and Buildings, 43(9), 2197-2202. https://doi.org/10.1016/j.enbuild.2011.04.027
Zhai, Z.J., & Previtali, J.M. (2010). Ancient Vernacular Architecture: Characteristics Categorization and Energy Performance Evaluation. Energy and Buildings, 42(3), 357-365. https://doi.org/10.1016/j.enbuild.2009.10.002
Zhang, Q. (2004). Residential Energy Consumption in China and Its Comparison with Japan, Canada, and USA. Energy and Buildings, 36(12), 1217-1225. https://doi.org/10.1016/s0140-6701(05)81372-4