تطابق اقلیمی کالبد گنبد بر اساس میزان دریافت تابش (بررسی گنبدهای مساجد: امام اصفهان، شیخ لطف الله، مسجد النبی قزوین و جامع ارومیه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

2 کارشناس ارشد معماری، دانشکده معماری و شهرسازی، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

چکیده

در طول تاریخ، گنبد عنصر شاخص در کالبد معماری مساجد ایران است. تاکنون عمده تحقیقات به بررسی شکلی و نمادپردازانه گنبد معطوف بوده است و عمده تحقیقات به تحلیل اثر شکل گنبد بر آسایش اقلیمی توجه نشده است. تنوع اقلیمی مناطق مختلف ایران، لزوم شناخت و استفاده از راهکارهایی ایجاد شرایط آسایش حرارت داخلی بنا را ضروری می‌سازد. هدف از این پژوهش شناخت میزان دریافت تابش خورشید و سایه‌اندازی بر رویه سطوح گنبد، در اقلیم‌های گرم و خشک و سرد بر پایه بررسی گنبدهای مساجد: امام اصفهان، شیخ لطف‌الله، مسجد‌النبی قزوین و جامع ارومیه، با استفاده از شبیه‌سازی تابش خورشید در پلاگین‌های Honeybee and ladybug با موتور شبیه‌سازی Radiance می‌باشد. در نخستین گام گنبدهای مساجد منتخب، در نرم‌افزار Revit2017 مدل‌سازی شد. سپس میزان دریافت تابش سالیانه آن‌ها در گرم‌ترین روز سال، ساعات 14، 16 و 18 بعدازظهر با استفاده از تحلیل تابش خورشید تحت پلاگین‌های Honeybee and ladybug انجام گرفت. نتایج آنالیزها نشان می‌دهد؛ با افزایش سطح گنبد مساجد میزان جذب حرارت در معرض تابش و در محدوده سایه افزایش می‌یابد، گنبدهای با خیز و ارتفاع بلند به لحاظ ایجاد سایه مناسب اقلیم گرم و خشک و گنبدهای با خیز و سطح تماس زیاد در اقلیم سرد و خشک به خاطر دریافت تابش زیاد مناسب هستند. ایجاد گنبد بر روی گریو باعث افزایش سایه اندازی در سطوح گنبد می‌شود. لذا چنین می‌توان بیان نمود که؛ شکل، خیز و نوع طاق گنبد در اقلیم‌های گرم و خشک و نیز سرد ایران براساس شرایط حرارتی و میزان نیاز جذب تابش خورشید در طول سال، طراحی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Climatic Adaptation of the Dome Body Based on Solar Radiation Received; Case Study: The Domes of Shah Mosque, Sheikh Lotfollah Mosque, Al-Nabi Mosque of Qazvin and Jameh Mosque of Urmia

نویسندگان [English]

  • Behzad Vasigh 1
  • Tohid Shiri 2
1 Assistant Professor of Architecture, Faculty of Architecture and Urban Planning, Jundi-Shapur University of Technology Dezful, Dezful, Iran
2 M.A. of Architecture, Faculty of Architecture and Urban Planning, Jundi-Shapur University of Technology Dezful, Dezful, Iran.
چکیده [English]

The dome has long been an essential element of Iranian mosque architecture. The majority of research has so far focused on the form and symbol of the dome rather than the effect of the dome form on climatic comfort. The climatic diversity of Iran’s various regions necessitates identifying and implementing strategies for thermal comfort conditions inside the building. Based on a study of the domes of Shah Mosque, Sheikh Lotfollah Mosque, Al-Nabi Mosque of Qazvin, and Jameh Mosque of Urmia, this study aimed to examine solar radiation received and shading on the dome surfaces in hot and arid and cold climates, using solar radiation simulation in the Honeybee and Ladybug plugins with the Radiance Simulation Engine. The first step was to model the domes of the selected mosques in the Revit 2017 software. Then, the annual solar radiation received by each at 2:00 p.m., 4:00 p.m., and 6:00 p.m. on the hottest day of the year was determined using the Honeybee and Ladybug plugins. Analyses indicate that as the dome surface increases, the amount of heat absorbed by them increases in both solar radiation-exposed and shadowed areas. High-rise domes of considerable height can survive in hot and arid climates as they produce appropriate shading, while high-rise domes with great contact surfaces can survive in cold and arid climates as they receive a large amount of solar radiation. Constructing a dome on the tambour increases the amount of shading on the dome surfaces. Thus, in both hot-arid and cold climates of Iran, the dome’s form, rise, and arch type can be said to have been designed based on thermal conditions and the amount of solar radiation absorbed throughout the year.

کلیدواژه‌ها [English]

  • Mosque Dome
  • Solar Radiation
  • Radiance
  • Honeybee-Ladybug
  • Climate
Andersson, B., Wayne, P., Kammerud, R., & Peter, M. (1985). Scofield, the Impact of Building Orientation on Residential Heating and Cooling. Energy and Buildings, 8(3), 05-224. Https://Doi.Org/10.1016/0378-7788(85)90005-2
Bahadori, M.N., & Haghighat, F. (1985). Passive Cooling in Hot, Arid Regions in Developing Countries by Employing Domed Roofs and Reducing the Temperature of Internal Surface. Building and Environment 20 (2), 103-13. https://doi.org/10.1016/0360-1323(85)90004-6
Bahadori, M.N. (1978). Passive Cooling Systems in Iranian Architecture. Scientific. Am. (238), 144-154. https://www.scientificamerican.com/article/passive-cooling-systems-in-iranian/
Bazazan, F., & Khosravani, N. (2016). Measuring Carbon Dioxide Emissions by Various Production Units and Households Due to Energy Consumption in Iran (Environmental-Input Data Approach), Environment Economics And Natural Resources, 1-25
Biwole, P.H., Woloshyn, M., & Pompeo, C. (2008). Heat Transfers in a Double-Skin Roof Ventilated by Natural Convection in Summer Time. Energy and Buildings, (40), 1487-1497. https://doi.org/10.1016/j.enbuild.2008.02.004
Bowen, A.B. (1981). Cooling Achievement in the Gardens of Moghul India, In: C. Bowen, K. Labs (Eds.), Proceeding of the International Passive and Hybrid Cooling Conference, Miami Beach, FL, 6-16 November, 27-32
Brito, M.C., Gomes, N., Santos, T., & Tenedório, J.A. (2012). Photovoltaic Potential in a Lisbon Suburb Using Lidar Data. Solar Energy, 86(1), 283-288, Https://Doi.Org/10.1016/J.Solener.2011.09.031
Chang, P. (2008). Development and Preliminary Evaluation of Double Roof Prototypes Incorporating RBS (Radiant Barrier System). Energy & Buildings, (40), 140-147. https://doi.org/10.1016/j.enbuild.2007.01.021
Fathy, H. (1973). Architecture for the Poor. University of Chicago Press, Chicago, London-12.
Fooladi, V. (2014). Investigating the Impact of Climate on the Characteristics of Two-Shell Domes in the Dry and Dry Region of Iran, Phd in Architecture. Tehran: Islamic Azad University, Science and Research Branch of Tehran.
Fooladi, V., Tahbaz, M., & Majedi, H. (2016). Two-Dimensional Dome from the Perspective of Thermal Performance in Desert Climate of Kashan. Quarterly Journal of Islamic Architecture, 11.
Freitas, S.C., Catita, P., Redweik, M., & Brito, C. (2015). Modelling Solar Potential in the Urban Environment: State-of-the-Art Review. Renewable and Sustainable Energy Reviews, 41, 915-931, Https://Doi.Org/10.1016/J.Rser.2014.08.060
Ghasemi, H.K. (2015). Ganjnameh Cultural Works of Islamic Architecture of Iran, Tehran: Shahid Beheshti University.
Ghobadian, V. (2014). The Climatic Review of the Traditional Iranian Buildings, Tehran: Tehran University Press.
Kasmaei, M., & Ahmadinejad, M. (2003). Climate and Architecture, Tehran: Khak Publishing.
Khorasani, F., & Bahadorinejad, M. (2009). Experimental Investigation of Air Flow over Domed Roofs. Science & Technology, 207-216.
Khorasani, F.A., & Bahadorinejad, R.M. (2009). Sunlight on Dome-Shaped Roofs, At the 18th Annual International Conference on Mechanical Engineering of Iran 2010. )ISME), Tehran, Sharif University of Technology, 21 To 23 May.
Koita, Y. (1981). Comfort Attainment in Moghul Architecture. In Proceedings of the International Passive and Hybrid Cooling Conference, 32-36. Miami Beach, FL.
Mainstone, R.J. (1983). Developments in Structural Form, M.L.T. Press, Cambridge, 95-136.
Memarian, G.H. (1988). The Neutrality of Vault Structures in Islamic Architecture of Iran, Tehran: Iran University of Science and Technology.
Memarian, G.H. (2012). Iranian-Iranian Architecture, Tehran: Naghma Nawandish, Volume II.
Michel, G. (2001). The Architecture of the World of Islam, (Yaghoubi, Trans.). Tehran: Molavi
Miranville, F. (2003). On the Thermal Behavior of Roof-Mounted Radiant Barriers under Tropical and Humid Climate Conditions: Modelling and Empirical Validation. Energy and Buildings,35 (10), 997-1008. https://doi.org/10.1016/S0378-7788(03)00035-5
Moshfegh, M., & Ibrahimi, M. (2008). Determining the Most Optimal Half Dome Angle to Ministry of Energy. 2014. 2012 Energy Balance Sheet. Tehran: Ministry of Energy, Power and Energy Affairs, Macro Planning Office of Electricity and Energy.
Perez, R., Ineichen, P., Seals, R., Michalsky, J., & Stewart, R. (1990). Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy, 44(5), 271-289. Https://Doi.Org/10.1016/0038-092X(90)90055-H
Perez, R., Seals, R., Ineichen, P., Stewart, R., & Menicucci, D. (1987). A New Simplified Version of the Perez Diffuse Irradiance Model for Tilted Surfaces. Solar Energy, 39(3), 221-231. Https://Doi.Org/10.1016/S0038-092X(87)80031-2
Pirnia, M.K. (1991). Gonbad in the Architecture of Iran. Zohre Bozorgmehri, Athar, 20.
Pope, A.U. (2016). Iranian Architecture, Translator: Ghulam Hossein Sadri-Afshar, Tehran, Publishing Akhtaran.
Shiri, T., & Momeni, K. (2020). Investigation of the Effects of Sunlight on the Surface of the Domes of Mosques in Desert Areas. The Journal of Geographical Research on Desert Areas, 8(1), 215-242.
Shiri, T., Didehban, M., & Taban, M. (2018). Investigation of the Amount of Heat Radiation Received on the Surfaces of the Dome of Reservoir (Haj Hassan and Mohammadabad Nodooshan), in the Sixth Conference of the Annual Congress of Civil Engineering, Architecture and Urban Development of Iran, Tehran.
Shiria, T., Didehban, M., & Taban, M. (2019). Temporary Accommodation Design with a Thermal Optimization Approach Taken From the Potential of Water Reservoir Dome, Master Thesis in Architecture and Urban Planning. Jundishapur Dezful University of Technology.
Shirib, T., Didehban, M., & Taban, M. (2019). The Effect of Form on the Amount of Shading and Heat Absorption in the Dome of Yazd Reservoirs. Journal of Islamic Architectural Research, 7 (4), 75-92. https://www.researchgate.net/publication/344112227_Effect_of_Form_on_Shading_amount_and_heat_Absorption_in_Domes_of_YAZD_AB_ANBARS
Tang, R.S., Meir I.A., & Etzion, Y. (2003). An Analysis of Absorbed Radiation by Domed and Vaulted Roofs as Compared with Flat Roofs. Energy and Building, 35 (6), 539-548. https://doi.org/10.1016/S0378-7788(02)00165-2
Ward, G. (1994). The RADIANCE Lighting Simulation and Rendering System In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. 45-47. 2https://Doi.Org/10.1145/192161.192286