اختصاصی سازی مدل قابلیت استفاده مجدد انطباقی(ARP) در نیروگاه های سوخت فسیلی، مورد مطالعاتی: نیروگاه حرارتی بعثت تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.

2 دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران

3 استاد گروه الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران.

4 استاد گروه مکانیک، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران.

5 دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.

چکیده

استفاده دوباره از ساختمان‌های موجود با استفاده حداکثری از قابلیت‌های سازه‌ای، کالبدی و مصالح بنا، رویکردی هماهنگ با اهداف توسعه پایدار است. به منظور سنجش ظرفیت و قابلیت ساختمان‌های موجود برای استفاده دوباره، مدل قابلیت استفاده مجدد انطباقی1 ابزار بسیار کارآمدی است. این مدل می‌تواند به‌عنوان یک ابزار مناسب در زمینه برنامه‌ریزی شهری و معماری و نحوه برخورد با ساختمان‌ها و بناهای موجود پیش از متروک شدن آن‌ها مطرح باشد. مدل قابلیت استفاده مجدد انطباقی با محاسبه عمر مفید ساختمان از طریق سنجش انواع از کارافتادگی‌های ساختمانی، سن فعلی ساختمان و عمر کالبدی پیش‌بینی شده برای آن، ظرفیت بنا را به منظور استفاده دوباره به‌دست می‌دهد. مدل قابلیت استفاده مجدد انطباقی، مدلی عمومی با کاربردی مشابه و یکسان در تمام ساختمان‌ها و قابل استفاده در تمام کشورها است. هدف مقاله اختصاصی‌سازی این مدل در نیروگاه‌های سوخت فسیلی است. به نظر می‌رسد که به این ترتیب امکان رسیدن به نتایج دقیق‌تری از مدل وجود دارد. روش پژوهش به فراخور مراحل مختلف، به این قرار است: مطالعات اسنادی و کتابخانه‌ای به منظور بررسی و تحلیل مدل قابلیت استفاده مجدد انطباقی و شناسایی انواع از کارافتادگی‌های ساختمانی؛ بازدید میدانی به منظور مطالعه نمونه موردی و بررسی انواع از کارافتادگی‌ها در آن؛ انجام مصاحبه با خبرگان، استفاده از پرسشنامه مقایسه زوجی و روش فرآیند تحلیل سلسله مراتبی(AHP) به منظور وزندهی و اولویت‌بندی انواع از کارافتادگی‌ها در نیروگاه‌های سوخت فسیلی. به منظور اعتبارسنجی نتایج، مدل اختصاصی شده قابلیت استفاده مجدد انطباقی در یک نمونه مطالعاتی اعمال شده و خروجی‌های بدست آمده، با نتایج حاصل از اعمال مدل به صورت اولیه و اصیل در همان نمونه مطالعاتی مقایسه می‌شود. تحلیل‌های انجام شده و نظر متخصصین به‌عنوان معیار و سنجه، مؤید این مطلب است که نتایج حاصل از مدل اختصاصی‌شده برای نیروگاه‌های سوخت فسیلی دقیق‌تر از مدل اولیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Customization of Adaptive Reuse Potential (ARP) Model for Fossil Fuel Power Plants; Case Study: Besat Thermal Power Plant, Tehran

نویسندگان [English]

  • Mohammad Pourebrahimi 1
  • Seyed Rahman Eghbali 2
  • Hassan Ghafori Fard 3
  • Mohsen Hamedi 4
  • Hasan Zolfagharzadeh 5
1 Ph.D. in Architecture, Faculty of Architecture and Urban Development, Imam Khomeini International University, Qazvin, Iran.
2 Associate Professor of Architecture, Faculty of Architecture and Urban Development, Imam Khomeini International University, Qazvin, Iran
3 Professor of Electronics, Faculty of Electrical Engineering, Amirkabir University of Technology, Tehran,Iran.
4 Professor of Mechanical Engineering, Faculty of Mechanical Engineering, University of Tehran, Tehran, Iran.
5 Associate Professor of Architecture, Faculty of Architecture and Urban Development, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Adaptive reuse of existing buildings, by maximum use of buildings structural, physical and material potentials, is regarded as an approach meeting sustainable development goals. The Adaptive Reuse Potential (ARP) model is seen as a very effective tool to measure the re-usability potentials of existing buildings. This model can serve as an appropriate tool in architecture and urban planning in dealing with existing buildings and structures before becoming obsolete. The Adaptive Reuse Potential model evaluates buildings reuse potential by calculating the useful life of the building through measuring different building obsolescence types, the current age of the building, and itspredicted physical life. The Adaptive Reuse Potential model is a general model uniformly applied in all building types and can be used in all countries. This paper aimed to customize this model to fossil fuel power plants, which may yield highly accurate results. The research methods as consistent with different stages were as follows: documentary and library studies were used to study and analyze the Adaptive Reuse Potential model and determine all building obsolescence types; field surveys to investigate the case study; interviewing experts; using a pairwise comparison questionnaire and the Analytic Hierarchy Process (AHP) method to weight and prioritize the types of obsolescence in fossil fuel power plants. To validate the results, the customized Adaptive Reuse Potential model was deployed to a case study and the outputs are compared with those outputs obtained from applying the original model in the same case study. According to performed analyzes and based on the experts views, it is affirmed that the results obtained from the customized Adaptive Reuse Potential model for fossil fuel power plants were more accurate than those of the primary model.

کلیدواژه‌ها [English]

  • Adaptive Reuse Potential Model
  • Reuse
  • Building Useful Life
  • Building Obsolescence
Abramson, D.M. (2012). From Obsolescence to Sustainability, Back Again, and Beyond, Design and Culture, 4(3), 279-298. https://doi.org/10.2752/175470812X13361292229078
Ahmad, N., Aspden, C., & Schreyer, P. (2005). Depreciation and Obsolescence’, Paper Prepared for the Meeting of the Canberra Group on Non-Financial Assets in Canberra, 29 March – 1 April.
Aksözen, M., Hassler, U., Rivallain, M., & Kohler, N. (2016). Mortality Analysis of an Urban Building Stock, Building Research & Information, 45(3), 259-277 . https://doi.org/10.1080/09613218.2016.1152531
Ashworth, A. (2004). Cost Studies of Buildings (4th ed.), Published by Pearson Education.
Baum, A. (1991). Property Investment Depreciation and Obsolescence, London: Routledg Publishing.
Blakstad, S.H. (2001). A Strategic Approach to Adaptability in Office Buildings.’ Ph.D. diss., Norwegian University of Science and Technology.
Bullen, P.A. (2007). Adaptive Reuse and Sustainability of Commercial Buildings, Facilities, 25(1/2), 20-31. DOI:10.1108/02632770710716911
Burton, J.E. (1933). Building Obsolescence and the Assessor. The Journal of Land & Public Utility Economics, 9(2), 109-120. https://doi.org/10.2307/3139079
Butt, T.E., Heywood, C.A., Paul, P., & Jones, K.G. (2014). Sustainability of and Obsolescence in the Built Environment: Two Contrary Notions. The Journal of Record, 7(2), 116-122. DOI:10.1089/SUS.2014.9801
Caccavelli, D., & Gugerli, H. (2002). TOBUS - a European Diagnosis and Decision-making Tool for Office Building Upgrading. Energy and Buildings, 34(2), 113-119. https://www.sciencedirect.com/journal/energy-and-buildings/vol/34/issue/2
Chaplin, R.I. (2003). The Threat of Obsolescence to Police Precincts on the Heritage ‘Beat’. International Journal of Heritage Studies, 9(2), 117-133. https://doi.org/10.1080/13527250304775
Conejos, S. (2013). Designing for Future Building Adaptive Reuse’ Doctoral Dissertation, Institute of Sustainable Development and Architecture Bond University, Gold Coast, Australia.
Conejos, S., Langston, C., & Smith, J. (2012). Designing for Future Buildings: Adaptive Reuse as a Strategy for Carbon Neutral Cities. The International Journal of Climate Change: Impacts and Responses, 3(2), 33-52. DOI:10.18848/1835-7156/CGP/v03i02/37103
Conejos, S., Langston, C., & Smith, J. (2014). Designing for Better Building Adaptability: A Comparison of AdaptSTAR and ARP Models. Habitat International, 41, 85-91. https://doi.org/10.1016/j.habitatint.2013.07.002
Conejos, S., Langston, C., & Smith, J. (2015). Enhancing Sustainability through Designing for Adaptive Reuse from the Outset. Facilities, 33(9/10), 531-552. DOI:10.1108/F-02-2013-0011
Douglas, J. (2006). Building Adaptation’ (2nd ed.). UK: Butterworth-Heinemann.
Dunse, N., & Jones, C. (2005). Rental Depreciation, Obsolescence and Location: the Case of Industrial Properties. Journal of Property Research, 22(2-3), 205-223. https://doi.org/10.1080/09599910500453988
Evelyn, T., & Guangming, L. (2010). Developing a Model for Computing the Building Adaptation Potential Index for Public Housing in Singapore. Architectural Science Review, 53(4), 429-440. https://doi.org/10.3763/asre.2009.0081
Flanagan, R., Norman, G., Meadows, J., & Robinson, G. (1989). Life Cycle Costing Theory and Practice. Published by BSP Professional Books
Geraedts, R., & Van der Voordt, T. (2002). Offices for Living in. An Instrument for Measuring the Potential for Transforming Offices into Homes. Open House International, 28(3), 80-90. https://www.researchgate.net/publication/236000473_OFFICES_FOR_LIVING_IN_An_instrument_for_measuring_the_potential_for_transforming_offices_into_homes
Goetz, E.G. (2012). Obsolescence and the Transformation of Public Housing Communities in the US. International Journal of Housing Policy, 12(3), 331-345. https://doi.org/10.1080/14616718.2012.709671
Grigsby, W., Baratz, M., & Maclennan, D. (1983). The Dynamics of Neighborhood Change and Decline’ (Research Report Series: 4). Philadelphia: University of Pennsylvania.
Grover, R., & Grover, C. (2015). Obsolescence- a Cause for Concern? Journal of Property Investment & Finance, 33(3), 299-314. https://www.emerald.com/insight/content/doi/10.1108/JPIF-02-2015-0016/full/html
Iselin, D.G., & Lemer, A.C. (1993). The Fourth Dimension in Building: Strategies for Minimizing Obsolescence.’ National Research Council (U.S.). Committee on Facility Design to Minimize Premature Obsolescence., Washington, D.C.
Johnston, K. (2016). Obsolescence and Renewal: Transformation of Post War Concrete Buildings.’ master thesis, University of Maryland
Kalligeros, K. (2003). Framework for the Optimal Design of Corporate Facilities for Contracting Operations’. 6th SMESME International Conference, Athens, Greece.
Khalid, G. (1994). Obsolescence in Hedonic Price Estimation of the Financial Impact of Commercial Office Buildings: The Case of Kuala Lumpur. Construction Management and Economics, 12(1), 37-44. https://doi.org/10.1080/01446199400000005
Kintrea, K. (2007). Housing Aspirations and Obsolescence: Understanding the Relationship. Journal of Housing and the Built Environment, 22(4), 321-338. DOI:10.1007/s10901-007-9087-4
Langston, C. (2011). Estimating the Useful life of Buildings’, 36th Australasian University Building Educators Association (AUBEA) Conference (418-432), April Gold Coast.
Langston, C. (2012). Validation of the Adaptive Reuse Potential (ARP) Model Using IconCUR. Facilities, 30(3), 105-123. https://www.emerald.com/insight/content/doi/10.1108/02632771211202824/full/html
Langston, C., Wong, F.K.W., Hui, E.C.M., & Shen L,Yin. (2008). Strategic Assessment of Building Adaptive Reuse Opportunities in Hong Kong. Building and Environment, 43, 1709-1718.
Langston, C., Yung, E.H.K., & Chan, E.H.W. (2013). The Application of ARP Modelling to Adaptive Reuse Projects in Hong Kong. Habitat International, 40, 233-243. https://doi.org/10.1016/j.habitatint.2013.05.002
Mansfield, J.R., & Pinder, J.A. (2008). Economic” and “Functional” Obsolescence: Their Characteristics and Impacts on Valuation Practice. Property Management, 26(3), 191-206. https://www.emerald.com/insight/content/doi/10.1108/02637470810879233/full/html
Mora, R., Bitsuamlak, G., & Horvat, M. (2011). Integrated Life-cycle Design of Building Enclosures. Building and Environment, 46, 1469-1479. https://doi.org/10.1016/j.buildenv.2011.01.018
Nutt, B., & Sears, D. (1972). Functional Obsolescence in the Planned Environment. Environment and Planning, 4, 13-29. https://econpapers.repec.org/article/saeenvira/v_3a4_3ay_3a1972_3ai_3a1_3ap_3a13-29.htm
Pourebrahimi, M., Eghbali, R., & Ghafori Fard, H. (2018). Assessment of Tehran Beasat Thermal Power Plant Reuse Potential, Based on Adaptive Reuse Potential (ARP) Model. Hoviatshahr, 12(2), 29-40. https://hoviatshahr.srbiau.ac.ir/article_12986.html?lang=en
Raftery, J. (1991). Principles of Building Economics, BSP Professional.
Rodi, W.N.W., Hwa, T.K., Said, A.S., Mahamood, N.M., Abdullah, M.I., & Abd Rasam, A.R. (2015). Obsolescence of Green Office Building: A Literature Review. Procedia Economics and Finance, 31, 651-660. https://doi.org/10.1016/S2212-5671(15)01153-3
Sanchez, B., & Haas C. (2018). A Novel Selective Disassembly Sequence Planning Method for Adaptive Reuse of Buildings. Journal of Cleaner Production, 183, 998-1010. https://doi.org/10.1016/j.jclepro.2018.02.201
Sarja, A. (2006). Predictive and Optimised Life Cycle Management. Taylor & Francis.
Shen, L.y., & Langston, C.  (2010). Adaptive Reuse Potential; an Examination of Differences between Urban and Non-urban Projects. Facilities, 28(1/2), 6-16. https://www.emerald.com/insight/content/doi/10.1108/02632771011011369/full/html
Tam, V.W.Y., & Hao, J.J.L. (2018). Adaptive Reuse in Sustainable Development. International Journal of Construction Management, 19(6), 1-13.
Tan, Y., Shen L.Y., & Langston, C. (2014). A Fuzzy Approach for Adaptive Reuse Selection of Industrial Building in Hong Kong. International Journal of Strategic Property Management, 18(1), 66-76. DOI:10.3846/1648715X.2013.864718
Thomsen, A., & Flier, K.V.D. (2011). Understanding Obsolescence: a Conceptual Model for Buildings. Building Research & Information, 39(4), 352-362. DOI:10.1080/09613218.2011.576328
Thomsen, A., Flier, K.V.D., & Nieboer, N. (2015). Analysing Obsolescence, an Elaborated Model for Residential Buildings. Structural Survey, 33(3), 210-227. DOI:10.1108/SS-12-2014-0040
Wang, H.J., & Zeng, Z.T. (2010). A Multi-objective Decision-making Process for Reuse Selection of Historic Buildings. Expert Systems with Applications, 37(2), 1241-1249. https://doi.org/10.1016/j.eswa.2009.06.034
Wilkinson, S.J., Remøy, H., & Langston, C. (2014). Sustainable Building Adaptation: Innovations in Decision-Making (1st ed.), Published by John Wiley & Sons, Ltd.
Williams, A. (1986). Remedying Industrial Building Obsolescence: The Options. Property Management, 4(1), 5-14. https://www.emerald.com/insight/content/doi/10.1108/eb006609/full/html
Yung, E.H.K., Langston, C., & Chan, E.H.W. (2014). Adaptive Reuse of Traditional Chinese Shophouses in Government-led Urban Renewal Projects in Hong Kong. Cities, 39, 87-98. https://doi.org/10.1016/j.cities.2014.02.012