بررسی تاثیر تورفتگی بدنه ساختمان بر عملکرد جریان باد شهری

نوع مقاله : مقاله پژوهشی

نویسنده

دکترای معماری، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران (نویسنده مسئول).

چکیده

پژوهش حاضر به بررسی تاثیر شاخصه های فرمی یک ساختمان بلندمرتبه بر جریان باد شهری پرداخت. نمونه مورد مطالعه یک واحد همسایگی متشکل از 9 بلوک ساختمانی میان مرتبه می باشد. ساختمان هدف، بنایی 9 طبقه واقع در مرکز مجموعه است که تغییرات ساختاری بر روی آن اعمال شده است. در گام اول پژوهش یک ساختمان صلب و 5 مدل با ساختارهای حجمی متفاوت، شبیه سازی و یکی از حالت های کارآمد از میان آن ها انتخاب گردید. در گام بعدی، با تغییر ارتفاع تورفتگی های بدنه، تاثیر این متغیر بر رفتار باد پیرامون بنا مورد بررسی قرار گرفت. روش تحقیق در بخش اول روش توصیفی با ابزار مطالعات کتابخانه ای و راهبرد پژوهش در بخش دوم، راهبرد شبه تجربی است. شبیه سازی های CFD و تحلیل های عددی با استفاده از نرم افزار Ansys Airpak 3.0.16 انجام گرفت. بررسی ها نشان داد تغییر ساختار هندسی می تواند رفتار باد پیرامون ساختمان و معابر اطراف آن را تحت تاثیر قرار دهد. در میان مناطق آئرودینامیک
اطراف ساختمان ها، منطقه پشت به باد و گوشواره ها شاهد بیش ترین و مناطق رو به باد دارای کم ترین تاثیرپذیری مثبت حاصل از تغییرات هندسی بوده اند. نتایج نشان داد توزیع منظم تورفتگی بدنه در ارتفاع ساختمان می تواند با تشدید سرعت باد اطراف به تهویه معابر کمک کند. نتیجه این تغییرات در بهترین حالت، افزایش 48.33 درصدی متوسط و 16.89 درصدی ماکزیمم سرعت باد شهری در مقایسه با مدل صلب می باشد. بررسی تغییر ارتفاع تورفتگی های بدنه بر پتانسیل باد شهری ثابت کرد که ارتباط مستقیمی میان این مولفه و کارآیی تهویه شهری برقرار نیست. در این میان مدل هایی با ارتفاع تراس 1.5 و 2.5 متر به ترتیب بهترین و ضعیف ترین عملکرد را از نظر تقویت جریان باد پیرامونی تراز عابر پیاده از خود نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Building Facade Recess on Urban Wind Flow Performance

نویسنده [English]

  • Paria Saadatjoo
University of Tabriz
چکیده [English]

 
 The current study aimed to investigate the effect of form characteristics of a high-rise building on urban wind flow. The study sample is a neighborhood unit consisting of 9 mid-rise building blocks. The target building is a 9-storey building located in the center of the complex, and structural changes were applied to it. In the first step, a rigid building and five models with different volumetric structures were simulated, and one of the efficient modes was selected from them. Then, by changing the height of the body recesses, the effect of this variable was investigated on the wind behavior around the building. The research method in the first part is a descriptive method with library study tools, and the research strategy in the second part is quasi-experimental. CFD simulations and numerical analysis were performed using Ansys Airpak 3.0.16 software. Studies have revealed that geometric structure changes can affect the wind behavior around the building and the surrounding paths. Among the aerodynamic areas around buildings, the back-to-the-wind area and the squinch had the most, and the wind-facing areas had the least positive impact due to geometric changes. The results revealed that regular distribution of body recess in the height of the building could help ventilate the passages by increasing the surrounding wind speed. The result of these changes is, at best, an average increase of 48.33% and a maximum urban wind speed of 16.89% compared to the rigid model. Investigation of the change in the height of body recesses on urban wind potential attested that there is no direct relationship between this component and the efficiency of urban ventilation. In the meantime, models with terrace heights of 1.5 and 2.5 meters showed the best and weakest performance in amplifying the wind flow around the pedestrian level, respectively.

کلیدواژه‌ها [English]

  • Building Form
  • Urban Wind
  • Body Recess
  • Wind Speed
Ai, Z. T., & Mak, C. M. (2013). CFD simulation of flow and dispersion around an isolated building: Effect of inhomogeneous ABL and near-wall treatment. Atmospheric Environment, 77, 568–578. https://doi.org/10.1016/j.atmosenv.2013.05.034
Aliabadi, A. A., Krayenhoff, E., Nazarian, N., Chew, L. W., Armstrong, P., Afshari, A., & Norford, L. (2017). Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons. Boundary-Layer Meteorology, 164. https://doi.org/10.1007/s10546-017-0246-1
Asfour, O. S. (2010). Prediction of wind environment in different grouping patterns of housing blocks. Energy and Buildings, 42(11), 2061–2069. https://doi.org/10.1016/j.enbuild.2010.06.015
Aynsley, R. (2007). Natural Ventilation in Passive Design. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.7478&rep=rep1&type=pdf
Bahadori, M. N. (1994). Viability of wind towers in achieving summer comfort in the hot arid regions of the middle east. Renewable Energy, 5(5), 879–892. https://doi.org/https://doi.org/10.1016/0960-1481(94)90108-2
Buccolieri, R., Sandberg, M., & Di Sabatino, S. (2010). City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmospheric Environment, 44(15), 1894–1903. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.02.022
Chen, K. W., & Norford, L. (2017). Evaluating Urban Forms for Comparison Studies in the Massing Design Stage. In Sustainability, 6(9). https://doi.org/10.3390/su9060987
Chew, L. W., & Norford, L. K. (2019). Pedestrian-level wind speed enhancement with void decks in three-dimensional urban street canyons. Building and Environment, 155, 399–407. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.03.058
Cui, D. J., Mak, C. M., Kwok, K. C. S., & Ai, Z. T. (2016). CFD simulation of the effect of an upstream building on the inter-unit dispersion in a multi-story building in two wind directions. Journal of Wind Engineering and Industrial Aerodynamics, 150, 31–41. https://doi.org/https://doi.org/10.1016/j.jweia.2016.01.007
Dhalluin, A., & Bozonnet, E. (2015). Urban heat islands and sensitive building design – A study in some French cities’ context. Sustainable Cities and Society, 19, 292–299. https://doi.org/https://doi.org/10.1016/j.scs.2015.06.009
Du, Y., Mak, C. M., Kwok, K., Tse, K. T., Lee, T. cheung, Ai, Z., Liu, J., & Niu, J. (2017). New criteria for assessing low wind environment at pedestrian level in Hong Kong. Building and Environment, 123, 23–36. https://doi.org/10.1016/j.buildenv.2017.06.036
Du, Y., Mak, C. M., Liu, J., Xia, Q., Niu, J., & Kwok, K. C. S. (2017). Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions. Building and Environment, 117, 84–99. https://doi.org/10.1016/j.buildenv.2017.03.001
Du, Y., Mak, C. M., & Tang, B. S. (2018). Effects of building height and porosity on pedestrian level wind comfort in a high-density urban built environment. Building Simulation, 11, 1215–1228. https://doi.org/10.1007/s12273-018-0451-y
Fadl, M. S., & Karadelis, J. (2013). CFD Simulation for Wind Comfort and Safety in Urban Area: A Case Study of Coventry University Central Campus. International Journal of Architecture, Engineering and Construction, 2(2), 131–143. https://doi.org/10.7492/ijaec.2013.013
Hagishima, A., Tanimoto, J., Nagayama, K., & Meno, S. (2009). Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorology, 132(2), 315–337. https://doi.org/10.1007/s10546-009-9403-5
Hang, J., Sandberg, M., & Li, Y. (2009). Effect of urban morphology on wind condition in idealized city models. Atmospheric Environment, 43(4), 869–878. https://doi.org/10.1016/j.atmosenv.2008.10.040
Hariri, M. T. R., Khosravi, S. N., & Saadatjoo, P. (2016). The Impact of High-rise Building Form on Climatic Comfort at the Pedestrian Level. Journal of Architecture and Urban Planning, 9(17), 61–77.
Ikegaya, N., Ikeda, Y., Hagishima, A., Razak, A. A., & Tanimoto, J. (2017). A prediction model for wind speed ratios at pedestrian level with simplified urban canopies. Theoretical and Applied Climatology, 127(3–4), 655–665. https://doi.org/10.1007/s00704-015-1655-z
Isyumov, N., & Davenport, A. G. . G. L. W. E. in B. (1975). The Ground Level Wind Environment in Built-up Areas. 4th International Conference on Wind Effects on Buildings and Structures.
Liu, J., Niu, J., & Xia, Q. (2016). Combining measured thermal parameters and simulated wind velocity to predict outdoor thermal comfort. Building and Environment, 105, 185–197. https://doi.org/10.1016/j.buildenv.2016.05.038
Medhat Osman. (2011). Evaluating and enhancing design for natural ventilation in walk-up public housing blocks in the Egyptian desert climatic design region. University of Dundee.
Melbourne, W. H. (1978). Criteria for environmental wind conditions. Journal of Wind Engineering and Industrial Aerodynaemics, 3(2), 241–249. https://doi.org/https://doi.org/10.1016/0167-6105(78)90013-2
Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T., & Ooka, R. (2002). Comparison of various k-ε models and DSM applied to flow around a high-rise building - Report on AIJ cooperative project for CFD prediction of wind environment. Wind and Structures An International Journal, 5, 227–244. https://doi.org/10.12989/was.2002.5.2_3_4.227
Montazeri, H., Blocken, B., & Hensen, J. L. M. (2015). Evaporative cooling by water spray systems: CFD simulation, experimental validation, and sensitivity analysis. Building and Environment, 83, 129–141. https://doi.org/https://doi.org/10.1016/j.buildenv.2014.03.022
Moonen, P., Defraeye, T., Dorer, V., Blocken, B., & Carmeliet, J. (2012). Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1(3), 197–228. https://doi.org/https://doi.org/10.1016/j.foar.2012.05.002
NajafKhosravi, S., Saadatjoo, P., Mahdavinejad, M., & Amindeldar, S. (2016). The effect of roof details on natural ventilation efficiency in single isolated buildings. PLEA 2016 - Cities, Buildings, People: Towards Regenerative Environments.
Ng, E., YUAN, C., Chen, L., Ren, C., & Fung, J. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101, 59–74. https://doi.org/10.1016/j.landurbplan.2011.01.004
Rose, L., Horrison, E., & Lavanya Jothi Venkatachalam. (2011). Influence of Built Form on the Thermal Comfort of Outdoor Urban Spaces. The 5th International Conference of the International Forum on Urbanism (IFoU), Oke 1987.
Saadatjoo, P., Mahdavinejad, M., Khosravi, S. N., & Kaveh, N. (2016). Effect of Courtyard Proportion on Natural Ventilation efficiency. 5, 92–97.
Saadatjoo, P., Mahdavinejad, M., & Zarkesh, A. (2019). Porosity Rendering in High-Performance Architecture : Wind-Driven Natural Ventilation and Porosity Distribution Patterns. 12(26), 73–87. https://doi.org/10.22034/AAUD.2019.89057
Saadatjoo, P., Mahdavinejad, M., & Zhang, G. (2018). A study on terraced apartments and their natural ventilation performance in hot and humid regions. Building Simulation, 11(2), 359–372. https://doi.org/10.1007/s12273-017-0407-7
Saadatjoo, P., Mahdavinejad, M., Zhang, G., & Vali, K. (2021). Influence of permeability ratio on wind-driven ventilation and cooling load of mid-rise buildings. Sustainable Cities and Society, 70, 102894. https://doi.org/https://doi.org/10.1016/j.scs.2021.102894
Saadatjoo, P., & Saligheh, E. (2021). The Role of Buildings Distribution Pattern on Outdoor Airflow and Received Daylight in Residential Complexes; Case study: Residential Complexes in Tehran. Naqshejahan-Basic Studies and New Technologies of Architecture and Planning, 11(3), 67–92. http://bsnt.modares.ac.ir/article-2-50471-en.html
Saligheh, E., & Saadatjoo, P. (2020). Impact of Central Courtyard Proportions on Passive Cooling Potential in Hot and Humid Regions (Case Study: Single-story Buildings in Bandar Abbas). Naqshejahan-Basic Studies and New Technologies of Architecture and Planning, 10(2), 137–152.
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1749–1761. https://doi.org/10.1016/j.jweia.2008.02.058
Tsang, C. W., Kwok, K. C. S., & Hitchcock, P. A. (2012). Wind tunnel study of pedestrian level wind environment around tall buildings: Effects of building dimensions, separation and podium. Building and Environment, 49, 167–181. https://doi.org/10.1016/j.buildenv.2011.08.014
Tse, K. T., Zhang, X., Weerasuriya, A. U., Li, S. W., Kwok, K. C. S., Mak, C. M., & Niu, J. (2017). Adopting ‘lift-up’ building design to improve the surrounding pedestrian-level wind environment. Building and Environment, 117, 154–165. https://doi.org/10.1016/j.buildenv.2017.03.011
Tsichritzis, L., & Nikolopoulou, M. (2019). The effect of building height and façade area ratio on pedestrian wind comfort of London. Journal of Wind Engineering and Industrial Aerodynamics, 191, 63–75. https://doi.org/10.1016/j.jweia.2019.05.021
Uematsu, Y., & Isyumov, N. (1999). Wind pressures acting on low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 82(1), 1–25. https://doi.org/https://doi.org/10.1016/S0167-6105(99)00036-7
Willemsen, E., & Wisse, J. A. (2007). Design for wind comfort in The Netherlands: Procedures, criteria and open research issues. Journal of Wind Engineering and Industrial Aerodynamics, 95(9), 1541–1550. https://doi.org/https://doi.org/10.1016/j.jweia.2007.02.006
Wu, Y., Niu, J., & Liu, X. P. (2017). Air infiltration induced inter-unit dispersion and infectious risk assessment in a high-rise residential building. Building Simulation, 11. https://doi.org/10.1007/s12273-017-0388-6
Xu, X., Yang, Q., Yoshida, A., & Tamura, Y. (2017). Characteristics of pedestrian-level wind around super-tall buildings with various configurations. Journal of Wind Engineering and Industrial Aerodynamics, 166, 61–73. https://doi.org/10.1016/j.jweia.2017.03.013
Yim, S. H. L., Fung, J. C. H., Lau, A. K. H., & Kot, S. C. (2009). Air ventilation impacts of the “wall effect” resulting from the alignment of high-rise buildings. Atmospheric Environment, 43(32), 4982–4994. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.07.002
Yuan, C., & Ng, E. (2012). Building porosity for better urban ventilation in high-density cities - A computational parametric study. Building and Environment, 50, 176–189. https://doi.org/10.1016/j.buildenv.2011.10.023
Zhang, X., Tse, K. T., Weerasuriya, A. U., Li, S. W., Kwok, K. C. S., Mak, C. M., Niu, J., & Lin, Z. (2017). Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications. Building and Environment, 124, 245–257. https://doi.org/10.1016/j.buildenv.2017.08.012
Zheng, X., Montazeri, H., & Blocken, B. (2020). CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES. Building and Environment, 173, 106747. https://doi.org/10.1016/j.buildenv.2020.106747