میزان اثربخشی کلکتورهای آب گرم و سلول‌های خورشیدی بر گرمایش و کاهش مصرف انرژی در مدارس ابتدایی ارومیه، مورد مطالعاتی: مدرسه ابتدایی دخترانه در شهر ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه معماری، دانشکده هنر و معماری، دانشگاه آزاد اسلامی واحد تهران شرق، تهران، ایران.

2 دانشجوی کارشناسی ارشد معماری، دانشگاه آزاد اسلامی واحد تهران شرق، تهران، ایران (نویسنده مسئول).

10.22034/aaud.2023.338109.2651

چکیده

با افزایش بحران زیست‌محیطی، استفاده از انرژی خورشیدی اهمیت ویژه‌ای پیدا کرد که بتواند گامی موثر برای کاهش آلودگی ناشی از سوخت‌ها و مصرف انرژی باشد. لذا استفاده از تکنولوژی‌های نوین در معماری فضاهای آموزشی امری ضروری محسوب می‌شود. استفاده از سامانه سلول‌های خورشیدی (سیستم‌ فتوولتائیک)1 و کلکتور2 آب گرم که تاثیر به‌سزایی در گرمایش دارند می‌تواند در این راستا مفید واقع شود. هدف از این پژوهش بررسی میزان اثربخشی این دو مولفه بر گرمایش و کاهش مصرف انرژی در بناهای آموزشی اقلیم سرد وکوهستانی می‌باشد. در پژوهش فوق، در گام نخست با بهره‌گیری از مطالعات کتابخانه‌ای و اسنادی به استخراج مولفه‌های موثر پرداخته شد. در مرحله دوم، ابتدا آبگرمکن خورشیدی با استفاده از نرم‌افزار تیسول3 به صورت دینامیک در اقلیم ارومیه مورد شبیه‌سازی قرار گرفته است سپس یکی از مدارس موجود در ارومیه بررسی و آنالیز شد و با شبیه‌سازی ساختمان آموزشی طراحی‌شده‌ی پیشنهادی در دیزاین بیلدر و مدلسازی آبگرمکن‌های خورشیدی و سلول‌های فتوولتائیک بر روی بنا، میزان اثربخشی و عملکرد آن‌ها بر گرمایش، انرژی تولیدی و درصد تامین آب گرم مورد بررسی قرار گرفت. طبق نتایج به‌دست آمده در آبگرمکن خورشیدی مقدار تأمین آب گرم ۳.‏۸۱ درصد، راندمان این سیستم ۹.‏۴۹ درصد و گاز صرفه‌جویی‌شده معادل ۲۶۷۰ متر مکعب خواهد بود. انرژی تولیدی توسط سامانه سلول‌های خورشیدی در نیروگاه روی پشت بام ۴۷ درصد و در نیروگاه دیوارهای ضلع جنوب ۳.‏۲۲ درصد برق مصرفی ساختمان را در طول سال تامین می‌کند و در نتیجه‌ی مقایسه حالت موجود با حالت طراحی‌شده پیشنهادی، صرفه‌جویی کل 80.3 درصد بود؛ بنابراین کلکتورهای آب گرم و سلول‌های فتوولتائیک تاثیر چشمگیری در به حداقل رساندن انرژی‌های ساختمان‌های آموزشی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effectiveness of hot water collectors and photovoltaic cells on heating and reducing energy consumption in primary schools in Urmia (case example: girls' primary school in Urmia)

نویسندگان [English]

  • saeed Azemati 1
  • shahrzad haji Razzaghi 2
  • Sara Tahersima 1
1 Assistant Professor of Architecture, Faculty Member, East Tehran Branch, Islamic Azad University
2 Islamic Azad University, East Tehran Branch
چکیده [English]

With the increasing environmental crisis, the use of solar energy became especially important, which can be an effective step to reduce pollution caused by fuels and energy consumption. Therefore, the use of new technologies in the architecture of educational spaces is considered essential. The use of photovoltaic system and hot water collector, which have a significant effect on heating, can be useful in this regard. The purpose of this research is to investigate the effectiveness of these two components on heating and reducing energy consumption in educational buildings in cold and mountainous climates. In the above research, in the first step, effective components were extracted by using library and document studies. In the second stage, first, the solar water heater has been dynamically simulated using TSOL software in Urmia region, then one of the existing schools in Urmia was investigated and analyzed, and by simulating the proposed educational building in Design Builder and Modeling Solar water heaters and photovoltaic cells on the building, their effectiveness and performance on heating, production energy and the percentage of hot water supply were investigated. According to the results obtained in the solar water heater, the amount of hot water supply will be 81.3%, the efficiency of this system will be 49.9% and the saved gas will be equal to 2670 cubic meters.
The energy produced by the photovoltaic system in the power plant on the roof provides 47% and in the power plant on the south side walls 22.3% of the electricity consumption of the building throughout the year, and as a result of comparing the existing state with the proposed design, the total saving was 80.3%, so Hot water collectors and photovoltaic cells have a significant effect in minimizing the energy of educational buildings.

کلیدواژه‌ها [English]

  • Active solar system
  • Solar Water Heater
  • Photovoltaic cells
  • Reducing energy consumption
  • Educational facilities
Abolhasani, Nooshin. 2013. Designing the facade of an office building using the features of the Trombe wall (in cold climates). Master thesis, Tehran Univ. [in Persian] 
Alnaqi, Abdulwahab A., Hossein Moayedi, Amin Shahsavar, and Truong Khang Nguyen. 2019. Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energy Conversion and Management. 183: 137-148. https://doi.org/10.1016/j.enconman.2019.01.005 
Asadi, Elham, and Ali Bamdad. 2016. “Application of solar systems in buildings to optimize energy in architecture.” The 5th International Conference on Research in Science and Technology, London, England. https://scholar.conference.ac/index.php/download/file/9857-The-use-of-solar-systems-in-buildings-to-optimize-energy-architecture [in Persian] 
Bakhshi, Koorosh, Seyed Alireza Musavi Parhizi, and Pooya Abbasnia. 2016. “Solar water heaters.” The 4th National Conference and the 2nd International Conference on Applied Research in Electrical, Mechanical and Mechatronics Engineering, Tehran. https://civilica.com/doc/626385 [in Persian]
Fakhrjoo, Sanaz, and Asadollah Shafi Zadeh. 2015. “Sustainable architecture in the design of educational spaces.” 1st International conference on man, architecture, civil engineering and the city, Tabriz. https://civilica.com/doc/410137 [in Persian]
Farhangi, Hadi, and Lachin Pahlevan Alamdari. 2016. “Maximum efficiency of solar energy and use of solar water heaters in the building.” The first competition of the comprehensive international conference of engineering sciences in Iran, Bandar Anzali. https://civilica.com/doc/545076 [in Persian]
Fouad, M. M., Lamia A. Shihata, and A. H. Mohamed. 2019. Modeling and analysis of Building Attached Photovoltaic Integrated Shading Systems (BAPVIS) aiming for zero energy buildingsin hot regions. Journal of Building Engineering 21: 18-27. https://doi.org/10.1016/j.jobe.2018.09.017 
Fina, Bernadette, Hans Auer, and Werner Friedl. 2019. Profitability of active retrofitting of multi-apartment buildings: Buildingattached/integrated photovoltaics with special consideration of different heating systems. Energy and Buildings 190(1): 86-102. https://doi.org/10.1016/j.enbuild.2019.02.034 
Gilani, Sara, and Behrouz Mohammad Kari. 2011. Investigation of Greenhouse’s Thermal Performance in Residential Buildings of Cold Climate Case Study: City of Ardebil. Modares Mechanical Engineering 11(2): 147-157. https://mme.modares.ac.ir/article-15-1022-fa.html [in Persian]
Hazami, Majdi, Nabiha Naili, Issam Attar, and Abdelhamid Farhat. 2013. ‘’Solar Water Heating Systems Feasibility for Domestic Requests in Tunisia: Thermal Potential and Economic Analysis,’’ Energy Conversion and Management 76: 599- 608. https://doi.org/10.1016/j.enconman.2013.07.079 
Iranmanesh, Leili, and Mahdieh Ramesh Khar. 2015. “Designing educational spaces in a hot and dry climate with the attitude of energy consumption management.” The first specialized conference on architecture and urban planning in Iran. https://civilica.com/doc/411061 [in Persian] 
Izadi, Hamidreza. 2014. Regulation of environmental conditions. Iranian Architecture Center. https://archijozve.ir/ [in Persian]
Khan Mohammadi, Mohammadali, and Leila Nasim Sobhan. 2015. “Priorities of using active and passive solar systems in cold climate buildings.” The second international conference on modern researches in civil engineering, architecture and urban planning, Istanbul. https://civilica.com/doc/509511 [in Persian]
Liang, Ruobing, Liangdong Ma, Jili Zhang, and Dan Zhao. 2011. “Theoretical and Experimental Investigation of the Filled-Type Evacuated Tube Solar Collector with U Tube”. Solar Energy 85(9): 1735-1744. https://doi.org/10.1016/j.solener.2011.04.012 
Lima, Thiago P., Jose Carlos C. Dutra, Ana Rosa M. Primo, Janardan Rohatgi, and Alvaro Antonio V. Ochoa. 2015. ‘’Solar Water Heating for a Hospital Laundry: A Case Study,’’ Solar Energy 122: 737-748. https://doi.org/10.1016/j.solener.2015.10.006 
Naderi, Shahla, and Mohammad Azad Ahmadi. 2017. “Investigating the role of photovoltaic systems in the active use of solar energy.” The first annual international congress on civil engineering, architecture and urban studies, Shiraz. https://www.tpbin.com/article/67705 [in Persian]
Naspolini, Helena F., and Ricardo Rüther. 2012. ‘’Assessing the Technical and Economic Viability of Low Cost Domestic Solar Hot Water Systems (DSHWS) in Low-Income Residential Dwellings in Brazil,’’ Renewable Energy 48: 92-99. https://doi.org/10.1016/j.renene.2012.04.046 
Nerbert, Leckner. 2006. Heating, cooling, lighting: design approaches for architects. Translated by Mohammad ali Keynezhad, and Rahman Azari. Islamic Art University of Tabriz. [in Persian]
Palencia, P. Sánchez, N. Martín-Chivelet, and F. Chenlo. 2019. Modeling temperature and thermal transmittance of building integrated photovoltaic modules. Solar Energy 184: 153-161. https://doi.org/10.1016/j.solener.2019.03.096
 Piratheepan, M., and T. N. Anderson. 2017. Performance of a building integrated photovoltaic/thermal concentrator for facade applications. Solar Energy 153: 562-573. https://doi.org/10.1016/j.solener.2017.06.006 
Poor Sistani, Mohammadreza, Poopak Poor Sistani, and Pooneh Poor Sistani. 2013. “Investigating the use of photovoltaic systems in the use of renewable solar energy in buildings.” The third international conference on new approaches in energy conservation, Tehran. https://civilica.com/doc/305406 [in Persian]
Sadeghzadeh, Mohammad Ali. 2019. “Promotion the Efficiency of Thermosyphon Solar-Electrical Water Heaters Using a Daily Scheduled Timer Key”. Energy: Engineering & Management 9(3): 98-107. https://energy.kashanu.ac.ir/?_action=article&kw=304110&_kw=Scheduled+Timer+Key&lang=en
Saebi Safa, Bahar, Fatemeh Heidari, and Negar Soleimanpoor. 2020. “Auditing the amount of energy loss through the external walls of the building and the effect of thermal insulation by simulation in Design Builder software (case example: office building in Tehran).” The first international conference and the fifth conference on architecture and sustainable urban development. https://civilica.com/doc/1001583 [in Persian]
Saeed Zadeh Khanghah, Elahe. 2015. “Application of solar energy and photovoltaic systems integrated with the building.” International Conference on New Researches in Civil Engineering, Architecture and Urban Planning, Tehran. https://civilica.com/doc/449531 [in Persian]
Sarookhani, Ali. 2003. “Building heating with floor heating system and use of new energy.” The third conference on optimizing fuel consumption in buildings, Tehran. https://civilica.com/doc/2531 [in Persian] 
Torabi, Fatemeh. 2017. “Optimizing energy consumption in the building by using solar water heaters and floor heating system.” The 7th International Conference on Sustainable Development and Urban Development, Isfahan. https://civilica.com/doc/701649 [in Persian]
Vafaei, Rahil. 2009. Photovoltaic systems in combination with architecture (buildings integrated with photovoltaics) BIPV. Master’s thesis, Shahid Beheshti Univ. [in Persian] 
Vafaei, Rahil, and Shahram Pourdeihimi. 2015 . Estimating Solar Radiation on Building-Integrated Photovoltaic Systems. Soffeh Scientific-Research Journal 25(2): 19-36. https://soffeh.sbu.ac.ir/article_100251.html [in Persian]
Ya Brigitte, Assoa, Leon Gaillard, Christophe Ménézo, Nicolas Negri, and François Sauzedde. 2018. Dynamic prediction of a building integrated photovoltaic system thermal behaviour. Applied Energy 214: 73-82. https://doi.org/10.1016/j.apenergy.2018.01.078 
Yang, Siliang, Alessandro Cannavale, Deo Prasad, Alistair Sproul, and Francesco Fiorito. 2019. Numerical simulation study of BIPV/T double-skin facade for various climate zones in Australia: Effects on indoor thermal comfort. Building Simulation 12(1): 51-67. https://link.springer.com/article/10.1007/s12273-018-0489-x 
http://m.af.ensuntec.com/solar-collector/vacuum-tube-solar-collector/vacuum-tube-solar-collecto.html